The Elk Code
 
Loading...
Searching...
No Matches
zfmtinp.f90
Go to the documentation of this file.
1
2! Copyright (C) 2002-2005 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl.
3! This file is distributed under the terms of the GNU General Public License.
4! See the file COPYING for license details.
5
6!BOP
7! !ROUTINE: zfmtinp
8! !INTERFACE:
9pure complex(8) function zfmtinp(nr,nri,wr,zfmt1,zfmt2)
10! !USES:
11use modmain
12! !INPUT/OUTPUT PARAMETERS:
13! nr : number of radial mesh points (in,integer)
14! nri : number of points on the inner part of the muffin-tin (in,integer)
15! wr : weights for integration on radial mesh (in,real(nr))
16! zfmt1 : first complex muffin-tin function in spherical harmonics
17! (in,complex(*))
18! zfmt2 : second complex muffin-tin function (in,complex(*))
19! !DESCRIPTION:
20! Calculates the inner product of two complex fuctions in the muffin-tin. In
21! other words, given two complex functions of the form
22! $$ f({\bf r})=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}f_{lm}(r)Y_{lm}
23! (\hat{\bf r}), $$
24! the function returns
25! $$ I=\sum_{l=0}^{l_{\rm max}}\sum_{m=-l}^{l}\int f_{lm}^{1*}(r)
26! f_{lm}^2(r)r^2\,dr\;. $$
27!
28! !REVISION HISTORY:
29! Created November 2003 (Sharma)
30! Modified, September 2013 (JKD)
31! Modified for packed functions, June 2016 (JKD)
32!EOP
33!BOC
34implicit none
35! arguments
36integer, intent(in) :: nr,nri
37real(8), intent(in) :: wr(nr)
38complex(8), intent(in) :: zfmt1(*),zfmt2(*)
39! local variables
40integer n,ir,i
41! compute the dot-products for each radial point and integrate over r
42zfmtinp=0.d0
43if (lmaxi == 1) then
44 do ir=1,nri
45 i=4*(ir-1)+1
46 zfmtinp=zfmtinp+wr(ir) &
47 *(conjg(zfmt1(i))*zfmt2(i) &
48 +conjg(zfmt1(i+1))*zfmt2(i+1) &
49 +conjg(zfmt1(i+2))*zfmt2(i+2) &
50 +conjg(zfmt1(i+3))*zfmt2(i+3))
51 end do
52 i=4*nri+1
53else
54 i=1
55 n=lmmaxi-1
56 do ir=1,nri
57 zfmtinp=zfmtinp+wr(ir)*dot_product(zfmt1(i:i+n),zfmt2(i:i+n))
58 i=i+lmmaxi
59 end do
60end if
61n=lmmaxo-1
62do ir=nri+1,nr
63 zfmtinp=zfmtinp+wr(ir)*dot_product(zfmt1(i:i+n),zfmt2(i:i+n))
64 i=i+lmmaxo
65end do
66end function
67!EOC
68
integer lmmaxi
Definition modmain.f90:207
integer lmaxi
Definition modmain.f90:205
integer lmmaxo
Definition modmain.f90:203
pure complex(8) function zfmtinp(nr, nri, wr, zfmt1, zfmt2)
Definition zfmtinp.f90:10