9integer,
intent(in) :: n
10real(8),
intent(in) :: x(n)
11real(8),
intent(out) :: wp(4,n)
16real(8),
external :: polynm
19 write(*,
'("Error(wsplintp): n < 4 : ",I8)') n
26wp(1,2)=
polynm(-1,4,x,f,x(2))
29wp(2,2)=
polynm(-1,4,x,f,x(2))
32wp(3,2)=
polynm(-1,4,x,f,x(2))
35wp(4,2)=
polynm(-1,4,x,f,x(2))
39 t1=
polynm(-1,4,x(i-2),f,x(i-1))
40 t2=
polynm(-1,4,x(i-2),f,x(i))
44 t1=
polynm(-1,4,x(i-2),f,x(i-1))
45 t2=
polynm(-1,4,x(i-2),f,x(i))
49 t1=
polynm(-1,4,x(i-2),f,x(i-1))
50 t2=
polynm(-1,4,x(i-2),f,x(i))
54 t1=
polynm(-1,4,x(i-2),f,x(i-1))
55 t2=
polynm(-1,4,x(i-2),f,x(i))
60t1=
polynm(-1,4,x(n-3),f,x(n-1))
61t2=
polynm(-1,4,x(n-3),f,x(n))
65t1=
polynm(-1,4,x(n-3),f,x(n-1))
66t2=
polynm(-1,4,x(n-3),f,x(n))
70t1=
polynm(-1,4,x(n-3),f,x(n-1))
71t2=
polynm(-1,4,x(n-3),f,x(n))
75t1=
polynm(-1,4,x(n-3),f,x(n-1))
76t2=
polynm(-1,4,x(n-3),f,x(n))
pure real(8) function polynm(m, np, xa, ya, x)
subroutine wsplintp(n, x, wp)