The Elk Code
 
Loading...
Searching...
No Matches
axangsu2.f90
Go to the documentation of this file.
1
2! Copyright (C) 2007-2008 J. K. Dewhurst, S. Sharma and C. Ambrosch-Draxl.
3! This file is distributed under the terms of the GNU General Public License.
4! See the file COPYING for license details.
5
6!BOP
7! !ROUTINE: axangsu2
8! !INTERFACE:
9pure subroutine axangsu2(v,th,su2)
10! !INPUT/OUTPUT PARAMETERS:
11! v : rotation axis vector (in,real(3))
12! th : rotation angle (in,real)
13! su2 : SU(2) representation of rotation (out,complex(2,2))
14! !DESCRIPTION:
15! Finds the complex ${\rm SU}(2)$ representation of a rotation defined by an
16! axis vector $\hat{\bf v}$ and angle $\theta$. The spinor rotation matrix is
17! given explicitly by
18! $$ R^{1/2}(\hat{\bf v},\theta)=I\cos\frac{\theta}{2}
19! -i(\hat{\bf v}\cdot\vec{\sigma})\sin\frac{\theta}{2}. $$
20!
21! !REVISION HISTORY:
22! Created August 2007 (JKD)
23!EOP
24!BOC
25implicit none
26! arguments
27real(8), intent(in) :: v(3),th
28complex(8), intent(out) :: su2(2,2)
29! local variables
30real(8) x,y,z,cs,sn,t1
31x=v(1); y=v(2); z=v(3)
32t1=sqrt(x**2+y**2+z**2)
33! return the identity matrix for a zero-length axis
34if (t1 < 1.d-8) then
35 su2(1,1)=1.d0
36 su2(2,1)=0.d0
37 su2(1,2)=0.d0
38 su2(2,2)=1.d0
39 return
40end if
41! normalise the vector
42t1=1.d0/t1
43x=x*t1; y=y*t1; z=z*t1
44cs=cos(0.5d0*th)
45sn=sin(0.5d0*th)
46su2(1,1)=cmplx(cs,-z*sn,8)
47su2(2,1)=cmplx(y*sn,-x*sn,8)
48su2(1,2)=cmplx(-y*sn,-x*sn,8)
49su2(2,2)=cmplx(cs,z*sn,8)
50end subroutine
51!EOC
52
pure subroutine axangsu2(v, th, su2)
Definition axangsu2.f90:10