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DFT ALGORITHMS

Find ¢, and p to solve:
{ T+ Vislp.r] 3 94(r) = £i¢;(1)

— pin——>

Compute V

~ind Elgenvectors

Determine E

Calculate pout

Converged?

Mix pout pin

Done

Standard Solution:

* Expand ¢, in a basis {¢;}.

 Many methods, PW, FE,
LAPW, LMTO, LCAO ...

* For fixed Vg get a linear
algebra problem.
(eigenvalue).

<¢[H|p>X; = &<0[p>X;
* [terate to find self-
consistent p.
Some Numbers:
* # ¢, ~ 10/ atom.
* #¢;~ 10's - 1000’s / atom.

» # atoms (State of the Art):
100 — 1000’s.



Motivation for Augmentation

Schrodinger Equation:

(T+V-e)p =0

For valence states: € IS
small =»

To 1s also small except
where V Is strong, I.e.
near the nucleus.




Augmented Planewave (APW) Method

«J.C. Slater, Phys. Rev. 51, 846 (1937); Phys. Rev. 81, 385 (1951).

SUEHEG Divide Space Into 2 Regions:

«Atom Centered Spheres
eInterstitial

“Basis” Consists of Planewaves 1n
the Interstitial and Radial Functions

In the Spheres.
QY2 Y, ¢, eiGHr reInterstitial (1)
G
¢(r) =
IZ A Uy(0) Y (1) reSphere (S)
m

* U,(r) are the radial solutions of Schrodinger’s equation at the energy of
Interest (i.e. the band energy).



Efficiency & Accuracy

(1) Very efficient basis set.

(2) Represent all quantities as generally as
possible in all regions of space and make
only controlled approximations.

Spheres: Atomic-like treatment
» Numerical radial functions times Y,..: can increase |,
« Angular integrals are fast due to orthogonality of the Y,

Interstitial: Free space like treatment
« Planewave expansions.
 Integrals are fast due to FFT properties
 Step function (cut out spheres) can be done exactly up to finite
G, DY convolution with pre-computed U(G)

maXx



Augmented Planewave (APW) Method

Q12 ZG Cg elCHh)T reInterstitial (1)
¢(r) =
IZ A Uy(0) Y (1) reSphere (S)
Key points: "

1.The A,,, are not variational parameters. They are determined by a
matching condition. That is the value of the basis functions, ¢,.¢ IS
fixed to be continuous at the sphere boundary.

2.The full crystal potential can be used because one may show that the
U, are orthogonal to “core” states.
[ -d? /dr? + I(1+1)/r2 + V(r) —E; ] ru(r) =0
So:
(E,—E,) ru,u, = u, (d’ru,/dr?) — u, (d?ru,/dr?)

Integrate by parts to get overlap of u, and u,. They are orthogonal if one
of them is 0 on the sphere boundary.



APW: An All-Electron Method

>

valence

2P3)

2P 1/

25

1s

APW

Atomic-
like
core
package

The u(r) Y,,(r) are orthogonal
core states.

=» Can use this basis to obtain
true valence states in the real
potential.

(1) Calculate core states
separately in each SCF
cycle.

(2) Use the same potential for
core and valence and
calculate the charge density
from the sum of these.



Augmented Planewave (APW) Method

Another Interesting Point:

» Since the basis functions are indexed by k+G one imagines a
connection with planewave pseudopotential formalisms.

<AO|H|AP>X = e< AP|AP>X = <P|ATHA|D>X = e<p|ATAP>X
HPS SPS
» So this is like non-norm-conserving pseudopotential.

* However, it is highly non-transferable:

 Cannot be used at another energy (because u is very energy dependent - ou/oE is
usually large).

 Cannot be used for a different potential.

» Result: The APW method as written requires use of an energy
dependent secular equation and is not practical for more than simple
solids.



The APW Method as a Pseudopotential

*It’s highly non-transferable, but it is soft!

COPPER
s , j-- € APW Band Structure of Cu using a
s4 L AN/ ‘|7 planewave cutoff of 8.4 Ry.
IO L
/ \ jjjj There is a trade-off between

Pt transferability and softness (nothing is
free). The story of linearization and
local orbitals is related to this.

o
j
o

DOS (STATES/Ry)
n ]
s EE o B o
©O_©o oo =] o o 1
i T T n
T o e
© LM
w =
»
=)
o
©
-
2
o
DOS (STATES/eV)

g . .8 1.0
ENERGY {Ry)

D.A. Papaconstantopoulos, 1986



Problems with the APW Method

1) Must solve secular equation for each energy band:
prohibitive for many bands. No clear way to make
full-potential.

2) Asymptote problem: cannot match at energies
where u(r) iIs zero on the sphere boundary. This will
In general happen at some energy — particular
problem for d and f band materials.



The Linearized Augmented Planewave
(LAPW) Method

O.K. Andersen, Phys. Rev. B 12, 3060 (1975).

Key Ideas:

* The problem with the APW method is the energy dependence of the
secular equation which is a result of the energy dependence of the
augmenting function.

 Solution: Add variational freedom: particularly #(r) = ou(r)/oE.

Q-l/Z Z CG eI(G+k)r rel
G

¢(r) =
E (Alm u|(r) T BIm ﬁ,(l‘)) YIm(r) reS

« Where A, and B, are determined by matching the value and
derivative of the basis functions at the sphere boundary.



THE LAPW METHOD

Results of adding #, to the basis:

1. Basis is flexible enough to use a single diagonalization (energy
errors are now O(6%)).

2. Must have additional matching conditions to connect both u and
to the planewaves. This means that for a given level of
convergence, more planewaves are needed.

3. The transferability also extends to variations in the potential: this
enables full-potential methods.

The full potential, all electron, nature combined with the flexible basis
(fully flexible in the interstitial) made the (F)LAPW method the state of
the art for calculating electronic structures, especially for transition
elements and their compounds — Many groups developed codes 1980 —
present.



Early Impact

Many works starting in 1980°s
showing predictive calculations for
complex materials and surfaces
with d and f elements.

VOLUME 57, NUMBER 26 PHYSICAL REVIEW LETTERS 29 DECEMBER 1986

Instability of the Ideal Tungsten (001) Surface

David Singh, Su-Huai Wei,® and Henry Krakauer
Department of Physics, College of William and Mary, Williamsburg, Virginia 23185




PROPERTIES OF THE LAPW METHOD

*All electron method: Core states are included.
* (¢ IS the true wavefunction, p is the true charge density ...

 Can calculate properties that depend on the details of the
wavefunction near the nucleus: EFG’s etc.

 Relativity can be included — scalar relativistic, spin-orbit ...

» No special treatment for core-valence interactions is needed.
«Atom centered representation:

« LDA+U, interpretation of transition element orbital populations.

« Matrix elements are complicated.

 IBS terms 1in forces, linear response ...

« Basis functions are extended — not very amenable to O(N) ...



CHOICE OF SPHERE RADII

Size of basis,

3
n, <G,

Compute time,

tocné)’ocGr?Hx

For most atoms, with “normal radii”, a given level of convergence is
reached for a certain, atom dependent value of rG

max*

Typical rG,, ., values for good convergence (always check):

Transition elements: 9 Should consider
f-electron materials: 9.5 in setting radii, which
Simple elements (B,C,N,O0) 7 are computational

Simple metals (Al, Si, ...) 6 not physical parameters.



Example (B2 NiAl)

Chemical Sense

Iy = 2.8 bohr
ryi = 1.9 bohr
ryGry= 6> G =215
MiGrax— 9 =2 G, —4.74

VS.

Computational Sense

ry = 1.9 bohr
ryi = 2.8 bohr
'3Gra= 6 =2 G5 =3.15
MiGra=9 2 G, =3.21

(4.74/3.21)°= 33



EFG (102 vimd)

Complications in the LAPW Method

EFG Calculation for Rutile TiO, as a
function of the Ti p linearization energy
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P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys.
Rev. B 46, 1321 (1992).

Electronic Structure

M Ti3d/O2p

O 2p

Hybridized w.
Ti 4p, Ti 3d




Complications in the LAPW Method

What went wrong? The LAPW method requires
non-overlapping spheres

= There are serious limits to
how large Ry, can be especially
In oxides, nitrides, carbides.

But for many elements there are
extended core states that are not
close enough to zero on the
sphere boundary to have the u
and = orthogonal to them. On
€, € the other hand, the valence

g, states may have significant
contributions from the same I.

Figure 5.14 Variation of a semi-core and a valence
band with E,. The dotted lines at ¢, and €, denote the
true locations ol the bands.



Complications in the LAPW Method

Solution?: Use large spheres to get orthogonality to core states:
Unfortunately, crystal structures don t generally allow this.

Perovskite

Rutile Structure Layered Perovskite



Complications in the LAPW Method
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Problems with semi-core states



ONE SOLUTION

Treat all the states in a single energy window:

Electronic Structure « Automatically orthogonal.

E Ti 2d/0 2 * Need to add variational freedom.
-  Could invent quadratic or cubic APW
methods.

Q-l/Z Z CG ei(G+k)-r

_ G
Thap, Ti 3d o0 ={ % (AU (4Bt (N+Conh(1) Y (1)
Im

Problem: This requires an extra matching
_ condition, e.g. second derivatives
continuous =»method will be impractical

due to the high planewave cut-off needed.




THE LAPW+LO METHOD

LAPW+LO basis is:
Q-l/Z z CG ei(G+k)-r
o= ° o
IZ (Almul(r)'l'Blmul(r)) YIm(r) +
m

|2 Cim (A4 1t (N)+B iy (N +U@, (1)) Y (1)

The variational coefficients are: (1) cg and (2) ¢,

Subsidiary (non-variational) coefficients are A, B;, A’\, & B’ |,

A, and B,, are determined by matching the value and derivative on
the sphere boundary to the planewaves as usual.

« A’ and B’ are determined by matching the value and derivative on
the sphere boundary to zero. Thus this part
(A’ U (N+B 1, (N+u®@ () Y,.(r) is formally a local orbital.



THE LAPW+LO METHOD

Key Points:

1. The local orbitals need (and
should) only be used for those Shape of Hand S
atoms and angular momenta where
they are needed.

2. The local orbitals do not serve as
surrogate atomic wavefunctions in
the sense that they are in mixed
basis planewave codes: They are
just another way to handle the
augmentation. They look very
different from atomic functions.

3. We are trading a large number of
extra planewave coefficients for
some Cp,.




=1.90"

=2.00

E + 16980 (Ry//atom)

THE LAPW+LO METHOD

6 8 10

ST

D. Singh, Phys. Rev. B 43, 6388 (1991).
SLAPW—4
Cubic APW

|
1 Ryr=3.3 q

QAPW |

| SLAPW=3
N

=2.107

LAFW-rﬁ’q::—c-—-

LAPW+LO converges like
LAPW. The LO adds a few
basis functions (i.e. 3 per
atom for p states). Can also
use LO to relax linearization

errors, e.g. for a narrow d or f
band.

Suggested settings:

Two “energy” parameters,
one for u and i« and the other
for u®. Choose one at the
semi-core position and the
other at the valence.



THE COST OF PLANEWAVES
Sijg Clathrate \ "

E. Iilchter

Example of a structure with short bonds and large open spaces



THE APW+LO METHOD

In certain cases it is highly advantageous to lower RK,,, even at the
expense of some local orbitals:

« Structures with short bonds and large empty spaces.

e Structures with some “hard” atoms embedded in a matrix of “soft”
atoms: e.g. Mn impurities in Ge.

Then it is advantageous for selected atoms and |, to use local orbitals to
go back to the APW method.

n.b. now we only match the

Q12 ZG) Cg €iGHKT value on the boundary for
o(r) = { these I. This means that there

IZ (Anui(n) Yin(r) + are extra APW-like kinetic

m

energy terms in the

, (2)
E CIm(A imth(N)FUE(1)) Yin(1) Hamiltonian and forces.



Convergence of the APW+LO Method

E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000).
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REMARKS ON THE APW+LO METHOD

APW+LO is equivalent to LAPW not LAPW+LO. It is not suitable
for handling semicore states. For this LAPW+LO or APW+2L.O
should be used.

There 1s no requirement that all atoms or angular momenta be
augmented in the same way (see Madsen et al.). This can be exploited
by using APW+LO only for those atoms and | for which a high G .,
would otherwise be needed. For example, with Mn in Ge one might
use APW+LO only for the Mn 3d channel, and LAPW for all others.



How to Set Linearization Parameters

Extended Core States?

Set E, at the center Local Orbital
of the relevant states. Capability?
As needed, control NNS
linearization errors o
by reducing R, or Maximize R,  Use local orbitals
adding local orbitals. ,l, to treat semi-core
=» Done Ghost Bands?  states. = Done
YLES
NO YES

Lower £, to semi-
Done Raise E, core position. Reduce
R as needed.




Charge Density, Potential, etc.

Interstitial

p(r), V(r): Lattice Harmonics

¢(r): Atomic-like Functions

p(r), V(r): Stars

¢(r): Planewaves

* Normally exploit lattice
symmetry:

Stars In interstitial.
Lattice harmonics in
spheres.

Only store for
Inequivalent atoms.

Allows for fast evaluation of Coulomb potential via multipole approach.



Multipole Method for Coulomb Potential

M. Weinert. 1. Evaluate multipole moments of p

Inside spheres.

2. Construct a smooth charge density
(the pseudocharge) that is the same as
the real charge outside the sphere, and
has the same multipoles inside
* n.b. can construct a smooth charge

with a given multipole that is zero
outside a sphere

3. Use Fourier transform method to get VV =» exact in interstitial, but not

In spheres.
4. Integrate Poisson’s equation inward from sphere on radial grids to get

V inside spheres.

=>» fast method comparable to planewaves V¢ (G) = %
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