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ET[ ]=Ts[ ]+Eei[ ]+EH[ ]+Exc[ ]+Eii 

{Ts+Vks[ ,r]} I(r)= i i(r) 

Need tools that are reliable and 

predictive. 



DFT ALGORITHMS 

{ Ts + Vks[ ,r] } I(r) = i i(r) 

•Find I and  to solve: Standard Solution: 

• Expand I in a basis { j}. 

• Many methods, PW, FE, 

LAPW, LMTO, LCAO ... 

• For fixed VKS get a linear 

algebra problem. 

(eigenvalue). 

     < |H| >xi = i< | >xi 

• Iterate to find self-

consistent . 

Some Numbers: 

• # I ~ 10 / atom. 

• # j ~ 10’s - 1000’s / atom. 

• # atoms (State of the Art): 

100 – 1000’s. 

Compute V 

Find Eigenvectors 

Determine EF 

Calculate out 

Converged? 
Yes 

Done 

No 
Mix out in 

in 



Motivation for Augmentation 

Schrödinger Equation: 

(T+V- )  = 0 

For valence states:  is 

small  

T  is also small except 

where V is strong, i.e. 

near the nucleus. 



Augmented Planewave (APW) Method 
•J.C. Slater, Phys. Rev. 51, 846 (1937); Phys. Rev. 81, 385 (1951). 

ul(r)Ylm(r) 

ei(G+k) r Divide Space Into 2 Regions: 

•Atom Centered Spheres 

•Interstitial 

“Basis” Consists of Planewaves in 

the Interstitial and Radial Functions 

in the Spheres. 

(r) = { 
-1/2  cG ei(G+k) r  r Interstitial (I) 

G 

 Alm ul(r) Ylm(r)  r Sphere (S) 
lm 

•  ul(r) are the radial solutions of Schrodinger’s equation at the energy of 

interest (i.e. the band energy). 



Efficiency & Accuracy 

S 

I 
(1) Very efficient basis set. 

 

(2) Represent all quantities as generally as 

possible in all regions of space and make 

only controlled approximations. 

Spheres: Atomic-like treatment 

• Numerical radial functions times Ylm: can increase lmax 

• Angular integrals are fast due to orthogonality of the Ylm 

 

Interstitial: Free space like treatment 

• Planewave expansions. 

• Integrals are fast due to FFT properties 

• Step function (cut out spheres) can be done exactly up to finite 

Gmax by convolution with pre-computed U(G) 



(r) = { 
-1/2  cG ei(G+k) r  r Interstitial (I) 

G 

 Alm ul(r) Ylm(r)  r Sphere (S) 
lm 

Key points: 

1.The Alm are not variational parameters. They are determined by a 

matching condition. That is the value of the basis functions, k+G is 

fixed to be continuous at the sphere boundary. 

2.The full crystal potential can be used because one may show that the 

ul are orthogonal to “core” states. 

(E2 – E1) r u1 u2  =  u2 (d
2ru1/dr2) – u1 (d

2ru2/dr2)  

[ -d2 /dr2  + l(l+1)/r2 + V(r) – El ] rul(r) = 0  

So: 

Integrate by parts to get overlap of u1 and u2. They are orthogonal if one 

of them is 0 on the sphere boundary. 

Augmented Planewave (APW) Method 



The ul(r) Ylm(r) are orthogonal 

core states. 

 Can use this basis to obtain 

true valence states in the real 

potential. 

(1) Calculate core states 

separately in each SCF 

cycle. 

(2) Use the same potential for 

core and valence and 

calculate the charge density 

from the sum of these. 

APW: An All-Electron Method 
E 

1s 

2s 
2p1/2 

2p3/2 

. 

. 

. 

valence APW 

Atomic-

like 

core 

package 



Another Interesting Point: 

• Since the basis functions are indexed by k+G one imagines a 

connection with planewave pseudopotential formalisms. 

<A |H|A >x = < A |A >x      < |A†HA| >x = < |A†A >x  

HPS SPS 

• So this is like non-norm-conserving pseudopotential. 

• However, it is highly non-transferable: 

• Cannot be used at another energy (because u is very energy dependent - u/ E is 

usually large). 

• Cannot be used for a different potential. 

• Result: The APW method as written requires use of an energy 

dependent secular equation and is not practical for more than simple 

solids. 

Augmented Planewave (APW) Method 



•It’s highly non-transferable, but it is soft! 

D.A. Papaconstantopoulos, 1986 

 APW Band Structure of Cu using a 

planewave cutoff of 8.4 Ry. 

There is a trade-off between 

transferability and softness (nothing is 

free). The story of linearization and 

local orbitals is related to this. 

The APW Method as a Pseudopotential 



Problems with the APW Method 

1) Must solve secular equation for each energy band: 

prohibitive for many bands. No clear way to make 

full-potential. 

2) Asymptote problem: cannot match at energies 

where u(r) is zero on the sphere boundary. This will 

in general happen at some energy – particular 

problem for d and f band materials. 



The Linearized Augmented Planewave 

(LAPW) Method 
O.K. Andersen, Phys. Rev. B 12, 3060 (1975). 

Key Ideas: 

• The problem with the APW method is the energy dependence of the 

secular equation which is a result of the energy dependence of the 

augmenting function. 

• Solution: Add variational freedom: particularly ů(r) = u(r)/ E. 

(r) = { 
-1/2  cG ei(G+k) r    r I 

G 

 (Alm ul(r) + Blm ůl(r)) Ylm(r)  r S 
lm 

• Where Alm and Blm are determined by matching the value and 

derivative of the basis functions at the sphere boundary. 



THE LAPW METHOD 

Results of adding ůl to the basis: 

1. Basis is flexible enough to use a single diagonalization (energy 

errors are now O( 4)). 

2. Must have additional matching conditions to connect both u and ů 

to the planewaves. This means that for a given level of 

convergence, more planewaves are needed. 

3. The transferability also extends to variations in the potential: this 

enables full-potential methods. 

The full potential, all electron, nature combined with the flexible basis 

(fully flexible in the interstitial) made the (F)LAPW method the state of 

the art for calculating electronic structures, especially for transition 

elements and their compounds – Many groups developed codes 1980 – 

present. 



Early Impact 

YBa2Cu3O7 

Many works starting in 1980’s 

showing predictive calculations for 

complex materials and surfaces 

with d and f elements. 



PROPERTIES OF THE LAPW METHOD 
•All electron method: Core states are included. 

•  is the true wavefunction,  is the true charge density … 

• Can calculate properties that depend on the details of the 

wavefunction near the nucleus: EFG’s etc. 

• Relativity can be included – scalar relativistic, spin-orbit … 

• No special treatment for core-valence interactions is needed. 

•Atom centered representation: 

• LDA+U, interpretation of transition element orbital populations. 

• Matrix elements are complicated. 

• IBS terms in forces, linear response … 

• Basis functions are extended – not very amenable to O(N) … 



CHOICE OF SPHERE RADII 

A 

B 
Size of basis, 

3

maxGnb

Compute time, 

9

max

3 Gnt b

For most atoms, with “normal radii”, a given level of convergence is 

reached for a certain, atom dependent value of rGmax. 

Typical rGmax values for good convergence (always check): 

Transition elements:  9 

f-electron materials:   9.5 

Simple elements (B,C,N,O) 7 

Simple metals (Al, Si, …)  6 

Should consider 

in setting radii, which 

are computational 

not physical parameters. 



Example (B2 NiAl) 

Al 

Ni 

Al 

Ni 

 Chemical Sense vs.  Computational Sense 

rAl = 2.8 bohr 

rNi = 1.9 bohr 

rAlGmax= 6  Gmax=2.15 

rNiGmax= 9  Gmax=4.74 

 

rAl = 1.9 bohr 

rNi = 2.8 bohr 

rAlGmax= 6  Gmax=3.15 

rNiGmax= 9  Gmax=3.21 

 
(4.74/3.21)9 = 33 



Complications in the LAPW Method 

EFG Calculation for Rutile TiO2 as a 

function of the Ti p linearization energy 

P. Blaha, D.J. Singh, P.I. Sorantin and K. Schwarz, Phys. 

Rev. B 46, 1321 (1992). 

rTi=2.0 a0 

Electronic Structure 

E 

Ti- 3p 

O 2p 

Hybridized w. 

Ti 4p, Ti 3d 

Ti 3d / O 2p 

EF 



What went wrong? The LAPW method requires 

non-overlapping spheres 

There are serious limits to 

how large RMT can be especially 

in oxides, nitrides, carbides. 

But for many elements there are 

extended core states that are not 

close enough to zero on the 

sphere boundary to have the u 

and ů orthogonal to them. On 

the other hand, the valence 

states may have significant 

contributions from the same l. 

Complications in the LAPW Method 



Rutile Structure 

Solution?: Use large spheres to get orthogonality to core states: 

 Unfortunately, crystal structures don’t generally allow this. 

Perovskite 

Layered Perovskite 

Complications in the LAPW Method 



Problems with semi-core states 

Complications in the LAPW Method 



ONE SOLUTION 

Electronic Structure 

E 

Ti- 3p 

O 2p 

Hybridized w. 

Ti 4p, Ti 3d 

Ti 3d / O 2p 

EF 

Treat all the states in a single energy window: 

• Automatically orthogonal. 

• Need to add variational freedom. 

• Could invent quadratic or cubic APW 

methods. 

(r) = { 
-1/2  cG ei(G+k) r 

G 

 (Almul(r)+Blmůl(r)+Clmül(r)) Ylm(r) 
lm 

Problem: This requires an extra matching 

condition, e.g. second derivatives 

continuous method will be impractical 

due to the high planewave cut-off needed. 



THE LAPW+LO METHOD 

(r) = { 
-1/2  cG ei(G+k) r 

G 

 (Almul(r)+Blmůl(r)) Ylm(r) + 
lm 

 clm(A’lmul(r)+B’lmůl(r)+u(2)
l(r)) Ylm(r) 

lm 

LAPW+LO basis is: 

The variational coefficients are: (1) cG and (2) clm 

Subsidiary (non-variational) coefficients are Alm Blm A’lm & B’lm 

• Alm and Blm are determined by matching the value and derivative on 

the sphere boundary to the planewaves as usual. 

• A’lm and B’lm are determined by matching the value and derivative on 

the sphere boundary to zero. Thus this part 

(A’lmul(r)+B’lmůl(r)+u(2)
l(r)) Ylm(r) is formally a local orbital. 



THE LAPW+LO METHOD 
Key Points: 

1. The local orbitals need (and 

should) only be used for those 

atoms and angular momenta where 

they are needed. 

2. The local orbitals do not serve as 

surrogate atomic wavefunctions in 

the sense that they are in mixed 

basis planewave codes: They are 

just another way to handle the 

augmentation. They look very 

different from atomic functions. 

3. We are trading a large number of 

extra planewave coefficients for 

some clm. 

Shape of H and S 

<G|G> 



THE LAPW+LO METHOD 

RKmax 

La 

RMT = 3.3 a0 

D. Singh, Phys. Rev. B 43, 6388 (1991). 

Cubic APW 

QAPW 

LAPW+LO converges like 

LAPW. The LO adds a few 

basis functions (i.e. 3 per 

atom for p states). Can also 

use LO to relax linearization 

errors, e.g. for a narrow d or f 

band. 

Suggested settings: 

Two “energy” parameters, 

one for u and ů and the other 

for u(2). Choose one at the 

semi-core position and the 

other at the valence. 
 



THE COST OF PLANEWAVES 

Si46 Clathrate 

E. Richter 

Example of a structure with short bonds and large open spaces 



THE APW+LO METHOD 

In certain cases it is highly advantageous to lower RKMAX even at the 

expense of some local orbitals: 

• Structures with short bonds and large empty spaces. 

• Structures with some “hard” atoms embedded in a matrix of “soft” 

atoms: e.g. Mn impurities in Ge. 

Then it is advantageous for selected atoms and l, to use local orbitals to 

go back to the APW method. 

(r) = { 
-1/2  cG ei(G+k) r 

G 

 (Almul(r)) Ylm(r) + 
lm 

 clm(A’lmul(r)+u(2)
l(r)) Ylm(r) 

lm 

n.b. now we only match the 

value on the boundary for 

these l. This means that there 

are extra APW-like kinetic 

energy terms in the 

Hamiltonian and forces. 



Convergence of the APW+LO Method 

Ce 

E. Sjostedt, L. Nordstrom and D.J. Singh, Solid State Commun. 114, 15 (2000). 

x100 



REMARKS ON THE APW+LO METHOD 

• APW+LO is equivalent to LAPW not LAPW+LO. It is not suitable 

for handling semicore states. For this LAPW+LO or APW+2LO 

should be used. 

• There is no requirement that all atoms or angular momenta be 

augmented in the same way (see Madsen et al.). This can be exploited 

by using APW+LO only for those atoms and l for which a high Gmax 

would otherwise be needed. For example, with Mn in Ge one might 

use APW+LO only for the Mn 3d channel, and LAPW for all others. 



How to Set Linearization Parameters 



Charge Density, Potential, etc. 

 

• Normally exploit lattice 

symmetry: 

• Stars in interstitial. 

• Lattice harmonics in 

spheres. 

• Only store for 

inequivalent atoms. 

Allows for fast evaluation of Coulomb potential via multipole approach. 



Multipole Method for Coulomb Potential 
M. Weinert. 

1. Evaluate multipole moments of  

inside spheres. 

2. Construct a smooth charge density 

(the pseudocharge) that is the same as 

the real charge outside the sphere, and 

has the same multipoles inside 

• n.b. can construct a smooth charge 

with a given multipole that is zero 

outside a sphere 

3. Use Fourier transform method to get V  exact in interstitial, but not 

in spheres. 

4. Integrate Poisson’s equation inward from sphere on radial grids to get 

V inside spheres. 

 

  fast method comparable to planewaves 
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