Reduced Density Matrix Functional Theory for Many Electron Systems

S. Sharma, J. K. Dewhurst and E. K. U. Gross

Max-Planck-Institut fur Mikrostrukturphysik Weinberg 2, D-06120 Halle

Germany

July 2011

Solid	T_{N}	Band gap
MnO	118	3.7
FeO	198	2.5
CoO	292	2.4
NiO	523	4.1

Table: Néel temperature (in K) and band gap (in eV).

$$
\gamma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=N \int \Psi\left(\mathbf{r}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) \Psi^{*}\left(\mathbf{r}^{\prime}, \mathbf{r}_{2}, \ldots, \mathbf{r}_{N}\right) d^{3} r_{2} \ldots d^{3} r_{N}
$$

Total energy

$$
E[\gamma]=\int d^{3} r^{\prime} d^{3} r \delta\left(\mathbf{r}-\mathbf{r}^{\prime}\right)\left[-\frac{\nabla^{2}}{2}\right] \gamma\left(\mathbf{r}, \mathbf{r}^{\prime}\right)+E_{\mathrm{ext}}[\gamma]+E_{\mathrm{H}}[\gamma]+E_{\mathrm{xc}}[\gamma]
$$

"Power functional", Sharma et al. Phys. Rev. B 78, R201103 (2008)

RDM energy functional

$$
E_{\mathrm{xc}}\left[\left\{n_{i}\right\},\left\{\phi_{i}\right\}\right]=-\frac{1}{2} \sum_{i j}\left(n_{i} n_{j}\right)^{\alpha} \int \frac{\phi_{i}^{*}(\mathbf{r}) \phi_{j}(\mathbf{r}) \phi_{j}^{*}\left(\mathbf{r}^{\prime}\right) \phi_{i}\left(\mathbf{r}^{\prime}\right)}{\left|\mathbf{r}-\mathbf{r}^{\prime}\right|} d^{3} r d^{3} r^{\prime}
$$

$$
\phi_{i}(\mathbf{r})=\sum_{l} c_{l}^{i} \Psi_{l}^{K S}(\mathbf{r})
$$

Value of α is fixed to 0.565 and all calculations for extended - systems are performed with this FIXED value. The theory is , ab-initio in this sense.

Green's function in the bais of natural orbitals:

$$
i G_{\mu \beta}\left(t-t^{\prime}\right)=\frac{1}{\left\langle\Psi_{0}^{N} \mid \Psi_{0}^{N}\right\rangle}\left\langle\Psi_{0}^{N}\right| T\left[a_{\mu}(t) a_{\beta}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}^{N}\right\rangle
$$

Define a restricted but physically significant set of $N+1$ states

$$
\Psi_{\zeta}^{N+1}=\frac{1}{\sqrt{n_{\zeta}}} a_{\zeta}^{\dagger}\left|\Psi_{0}^{N}\right\rangle, \quad \Psi_{\zeta}^{N-1}=\frac{1}{\sqrt{\left(1-n_{\nu}\right)}} a_{\zeta}\left|\Psi_{0}^{N}\right\rangle
$$

spectral function

$$
\begin{aligned}
& A_{\mu \beta}(\omega)=2 \pi \sum_{\zeta} \frac{1}{n_{\zeta}}\left\langle\Psi_{0}^{N}\right| a_{\mu} a_{\zeta}^{\dagger}\left|\Psi_{0}^{N}\right\rangle\left\langle\Psi_{0}^{N}\right| a_{\zeta} a_{\beta}^{\dagger}\left|\Psi_{0}^{N}\right\rangle \delta\left(\omega-\epsilon_{\zeta}^{+}\right) \\
& -2 \pi \sum_{\nu} \frac{1}{n_{\nu}}\left\langle\Psi_{0}^{N}\right| a_{\mu}^{\dagger} a_{\nu}\left|\Psi_{0}^{N}\right\rangle\left\langle\Psi_{0}^{N}\right| a_{\nu}^{\dagger} a_{\beta}\left|\Psi_{0}^{N}\right\rangle \delta\left(\omega-\epsilon_{\nu}^{-}\right)
\end{aligned}
$$

$$
\operatorname{DOS}=2 \pi \sum_{\zeta} n_{\zeta} \delta\left(\omega-\epsilon_{\zeta}^{+}\right)-2 \pi \sum_{\nu}\left(1-n_{\nu}\right) \delta\left(\omega-\epsilon_{\nu}^{-}\right),
$$

$$
\epsilon_{\nu}^{ \pm}=E_{\nu}(N \pm 1)-E(N)
$$

with $E_{\nu}(N \pm 1)$ is energy of periodically repeated Born-von Karman (BvK) cell.

Approximating this

- The only occupation number that will change is the one that corresponds to the very same \mathbf{k}
- Derivative instead of energy difference

$$
\epsilon_{\nu}^{ \pm}=E_{\nu}(N \pm 1)-E(N)
$$

with $E_{\nu}(N \pm 1)$ is energy of periodically repeated Born-von
Karman (BvK) cell.
Approximating this

- The only occupation number that will change is the one that corresponds to the very same \mathbf{k}
- Derivative instead of energy difference

$$
\epsilon_{\nu}^{ \pm}=\left.\frac{\partial E\left[\left\{\phi_{\nu}\right\},\left\{n_{\nu}\right\}\right]}{\partial n_{\nu}}\right|_{n_{\nu=1 / 2}}
$$

Solid	T_{N}	Band gap
MnO	118	3.7
FeO	198	2.5
CoO	292	2.4
NiO	523	4.1

Table: Néel temperature (in K) and band gap (in eV).

Total DOS for TMOs (without long range magnetic order)

[GW: PRB 79235114 (09), DMFT: PRB 77195124 (08), PRB 74 195115 (06), Mat. Mat. 7, 198 (06)]

[cond-mat/0912.1118]

Charge density difference for NiO in [110] plane

[cond-mat/0912.1118, Phys. Rev. B 612506 (2000)]

[cond-mat/0912.1118, PRB 73, 073105 (06)]

Summary

- RDMFT has proved to be extremely successful for treatment of finite systems.
- Technique for obtaining spectral information from RDMFT groundstate is proposed.
- RDMFT captures the physics of Mott-insulators.

- Magnetic functionals for RDMFT
- Temperature dependent RDMFT to study pahse diagram of TMOs.

Summary

- RDMFT has proved to be extremely successful for treatment of finite systems.
- Technique for obtaining spectral information from RDMFT groundstate is proposed.
- RDMFT captures the physics of Mott-insulators.

Outlook

- Magnetic functionals for RDMFT
- Temperature dependent RDMFT to study pahse diagram of TMOs.

Green's function in the bais of natural orbitals:

$$
i G_{\alpha \beta}\left(t-t^{\prime}\right)=\frac{1}{\left\langle\Psi_{0}^{N} \mid \Psi_{0}^{N}\right\rangle}\left\langle\Psi_{0}^{N}\right| T\left[a_{\alpha}(t) a_{\beta}^{\dagger}\left(t^{\prime}\right)\right]\left|\Psi_{0}^{N}\right\rangle
$$

Define a restricted but physically significant set of $N+1$ states

$$
\Psi_{\zeta}^{N+1}=\frac{1}{\sqrt{n_{\zeta}}} a_{\zeta}^{\dagger}\left|\Psi_{0}^{N}\right\rangle, \quad \Psi_{\zeta}^{N-1}=\frac{1}{\sqrt{\left(1-n_{\nu}\right)}} a_{\zeta}\left|\Psi_{0}^{N}\right\rangle
$$

1. Why is it important the above states are eigen-states
2. When (under what conditions) are these states Eigen-states.
