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Hartree Fock

Wave function is one Slater Determinant:

Φ(x1,x2, · · · xN ) =

ϕ1(x1) ϕ1(x2) · · · ϕ1(xN )
ϕ2(x1) ϕ2(x2) · · · ϕ2(xN )

...
...

. . .
...

ϕN (x1) ϕN (x2) · · · ϕN (xN )

We need to minimize:

Etot =
〈Φ|Ĥ |Φ〉
〈Φ|Φ〉

Minimization chooses N orbitals out an infinite dimension
space (or of dimension M > N for practical applications).
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Energy in Hartree-Fock

Spin-orbitals ϕ(x) = ϕ(r)α(ω). For spin compensated systems:

Etot = 2

N/2
∑

j=1

h
(1)
jj + 2

N/2
∑

j,k=1

Jjk −
N/2
∑

j,k=1

Kjk

h
(1)
jj =

∫

d3r ϕ∗
j (r)

[

−1

2
∇2

r
+ V (r)

]

ϕj(r)

Jjk =

∫

d3r

∫

d3r′
|ϕj(r)|2 |ϕk(r

′)|2
|r− r

′|

Kjk =

∫

d3r

∫

d3 r′
ϕj(r) ϕ

∗
j (r

′) ϕk(r
′) ϕ∗

k(r)

|r− r
′|

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Energy in Hartree-Fock

Spin-orbitals ϕ(x) = ϕ(r)α(ω). For spin compensated systems:

Etot = 2

∞
∑

j=1

njh
(1)
jj + 2

∞
∑

j,k=1

njnk Jjk −
∞
∑

j,k=1

njnk Kjk

h
(1)
jj =

∫

d3r ϕ∗
j (r)

[

−1

2
∇2

r
+ V (r)

]

ϕj(r)

Jjk =

∫

d3r

∫

d3r′
|ϕj(r)|2 |ϕk(r

′)|2
|r− r

′|

Kjk =

∫

d3r

∫

d3r′
ϕj(r) ϕ

∗
j (r

′) ϕk(r
′) ϕ∗

k(r)

|r− r
′|

Where nj and nk occupation numbers
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Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk
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Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk

Assume that this functional is minimized w.r.t. nj, ϕj .
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Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk

Assume that this functional is minimized w.r.t. nj, ϕj .
It is not bound!
nj should satisfy extra conditions.
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Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk

Assume that this functional is minimized w.r.t. nj, ϕj .
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Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk

Assume that this functional is minimized w.r.t. nj, ϕj .

N-representability conditions of Coleman:

0 ≤ nj ≤ 1, and 2
∞
∑

j=1

nj = N

The first reflects the Pauli principle and the second fixes the
number of particles.

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk

Assume that this functional is minimized w.r.t. nj, ϕj .

N-representability conditions of Coleman:

0 ≤ nj ≤ 1, and 2
∞
∑

j=1

nj = N

The first reflects the Pauli principle and the second fixes the
number of particles.

There no extrema between 0 and 1. It is monotonous
selecting either 0 or 1.
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Hartree Fock Functional in RDMFT

Etot = 2
∞
∑

j=1

nj h
(1)
jj + 2

∞
∑

j,k=1

njnkJjk −
∞
∑

j,k=1

njnk Kjk

Assume that this functional is minimized w.r.t. nj, ϕj .

N-representability conditions of Coleman:

0 ≤ nj ≤ 1, and 2
∞
∑

j=1

nj = N

The first reflects the Pauli principle and the second fixes the
number of particles.

There no extrema between 0 and 1. It is monotonous
selecting either 0 or 1.

This functional collapses to Hartree-Fock Theory
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Density matrices
Total energy functional
Foundations

Density matrices

N -body density matrix

Γ(N)(r1, r2..rN ; r′1, r
′
2..r

′
N ) = Ψ∗(r′1, r

′
2..r

′
N ) Ψ(r1, r2..rN )

Reduce the order of the density matrix

Γ(p)(r1, ..rp; r
′
1, ..r

′
p) =

(

N
p

)∫

d3rp+1..d
3rNΨ∗(r′1, ..r

′
p, rp+1..rN ) Ψ(r1, ..rN )
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Density matrices

N -body density matrix

Γ(N)(r1, r2..rN ; r′1, r
′
2..r

′
N ) = Ψ∗(r′1, r

′
2..r

′
N ) Ψ(r1, r2..rN )

Reduce the order of the density matrix

Γ(p)(r1, ..rp; r
′
1, ..r

′
p) =

(

N
p

)∫

d3rp+1..d
3rNΨ∗(r′1, ..r

′
p, rp+1..rN ) Ψ(r1, ..rN )

Recurrence relation

Γ(p−1)(r1, ..rp−1; r
′
1, ..r

′
p−1) =

p

N − p+ 1

∫

d3rp Γ
(p)(r1, ..rp; r

′
1, ..r

′
p−1, rp)
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Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)
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Density matrices
Total energy functional
Foundations

Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)

Total energy
Etot = Ekin + Eext + Eint
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Density matrices
Total energy functional
Foundations

Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)

Total energy
Etot = Ekin + Eext + Eint

Ekin =

∫

d3r d3r′ δ(r − r
′)

(

−∇
2

2

)

γ(r; r′)
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Density matrices
Total energy functional
Foundations

Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)

Total energy
Etot = Ekin + Eext + Eint

Eext =

∫

d3r vext(r) γ(r; r)
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Density matrices
Total energy functional
Foundations

Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)

Total energy
Etot = Ekin + Eext + Eint

Eint =

∫

d3r d3r′
Γ(2)(r, r′; r, r′)

| r− r
′ |
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Density matrices
Total energy functional
Foundations

Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)

Total energy
Etot = Ekin + Eext + Eint

is a functional of Γ(2)
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Density matrices
Total energy functional
Foundations

Total energy

One-body density matrix

Γ(1)(r; r′) =
2

N − 1

∫

d3r2 Γ
(2)(r, r2; r

′, r2) =: γ(r; r′)

Total energy
Etot = Ekin + Eext + Eint

is a functional of Γ(2)

Why don’t we minimize the total energy with respect to Γ(2)?

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Density matrices
Total energy functional
Foundations

N -representability

Remember

Γ(2)(r1, r2; r
′
1, r

′
2) =

N(N − 1)

2

∫

d3r3..d
3rNΨ∗(r′1, r

′
2, r3..rN )Ψ(r1..rN )

with an antisymmetric, normalized wave function Ψ

For Γ(2) only several necessary N -representability conditions
are known1

Not sufficient leading to too small total energies in the
minimization

1
JCP 128, 164113 (2008)
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N -representability

For γ the N -representability conditions are known and quite
simple

Diagonalization of γ

γ(r; r′) =

∞
∑

j=1

nj ϕ
∗
j(r

′) ϕj(r)

Occupation numbers: 0 ≤ nj ≤ 1,
∑

j nj = N
Natural orbitals:

∫

d3r ϕj(r) ϕ
∗
k(r) = δjk
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Density matrices
Total energy functional
Foundations

N -representability

For γ the N -representability conditions are known and quite
simple

Diagonalization of γ

γ(r; r′) =

∞
∑

j=1

nj ϕ
∗
j(r

′) ϕj(r)

Occupation numbers: 0 ≤ nj ≤ 1,
∑

j nj = N
Natural orbitals:

∫

d3r ϕj(r) ϕ
∗
k(r) = δjk

Choice between knowing the functional dependence and
knowing the N -representability conditions
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RDMFT Foundations

Gilbert’s Theorem:2 Every ground-state observable is a
functional of the ground-state one-body reduced density
matrix

γgs(r; r
′)

1−1←→ Ψgs(r1, r2...rN )

No 1-1 correspondence to external potential as in DFT

Idempotency: for non-interacting particles nj = 0, 1, no
Kohn-Sham system

2
T. Gilbert Phys. Rev. B 12, 2111 (1975)
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Foundations

RDMFT Foundations

Gilbert’s Theorem:2 Every ground-state observable is a
functional of the ground-state one-body reduced density
matrix

γgs(r; r
′)

1−1←→ Ψgs(r1, r2...rN )

No 1-1 correspondence to external potential as in DFT

Idempotency: for non-interacting particles nj = 0, 1, no
Kohn-Sham system

Total energy

Etot = Ekin +Eext + EH + Exc

Exchange-correlation energy does not contain any kinetic
energy contributions

2
T. Gilbert Phys. Rev. B 12, 2111 (1975)
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional3: f(nj, nk) =
√
njnk

Goedecker-Umrigar4: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

3
A. Müller, Phys. Lett. A 105, 446 (1984); M. A. Buijse, E. J. Baerends, Mol. Phys. 100, 401 (2002)

4
S. Goedecker, C. J. Umrigar, Phys. Rev. Lett. 81, 866 (1998).
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC14:

f(nj, nk) =

{

−√njnk j 6= k both weakly occupied√
njnk otherwise.

4
O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005)
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC24:

f(nj, nk) =







−√njnk j 6= k both weakly occupied

njnk j 6= k both strongly occupied√
njnk otherwise.

4
O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005)
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC34:

f(nj, nk) =























−√njnk j 6= k both weakly occupied

njnk

{

j 6= k both strongly occupied
j(k) anti−bonding , k(j) not bonding

n2
j j = k√

njnk otherwise.

4
O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. 122, 204102 (2005)
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC1, BBC2, and BBC3

PNOF0: Cummulant expansion; BBC1 with removal of j = k
terms PNOF: additional term to avoid pinned states;
PNOF1-5 5

5
Piris, Int. J. Quant. Chem. 106, 1093 (2006); Piris, et al, JCP 134, 164102 (2011)
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC1, BBC2, and BBC3

PNOF0: BBC1 with removal of j = k terms

AC3: Similar to BBC3 with C2,C3 corrections analytic6

6
Rohr, et al, JCP 129, 164105 (2008).
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC1, BBC2, and BBC3

PNOF0: BBC1 with removal of j = k terms

AC3: Similar to BBC3 with C2,C3 corrections analytic

ML: Pade approximation for f , fit for a set of molecules7

7
Marques, Lathiotakis, PRA 77, 032509 (2008).
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC1, BBC2, and BBC3

PNOF0: BBC1 with removal of j = k terms

AC3: Similar to BBC3 with C2,C3 corrections analytic

ML: Pade approximation for f , fit for a set of molecules.

Power Functional8: f(nj, nk) = (njnk)
α

8
S. Sharma et al, PRB, 78, 201103(R) (2008).
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Functionals
Minimization

Müller type functionals

Exc = −
1

2

∞
∑

j,k=1

f(nj, nk)

∫

d3rd3r′
ϕj(r)ϕ

∗
j (r

′)ϕk(r
′)ϕ∗

k(r)

| r− r
′ |

Hartree-Fock: f(nj, nk) = njnk

Müller functional: f(nj, nk) =
√
njnk

Goedecker-Umrigar: f(nj, nk) =
√
njnk(1− δjk) + n2

jδjk

BBC1, BBC2, and BBC3

PNOF0: BBC1 with removal of j = k terms

AC3: Similar to BBC3 with C2,C3 corrections analytic

ML: Pade approximation for f , fit for a set of molecules

Power Functional: f(nj, nk) = (njnk)
α

Range separated hybrid GGA-Müller functional10

10
D.R. Rohr, J. Toulouse, K. Pernal, PRA, 82, 052502 (2010).
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Minimization

Minimize

F = Etot−µ





∞
∑

j=1

nj −N



−
∞
∑

j,k=1

ǫjk

(
∫

d3rϕ∗
j(r)ϕk(r)− δjk

)

Minimize with respect to nj and ϕj

Minimization with respect to nj can have border minima

0 1

E

n
j
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Functionals
Minimization

Minimization

Minimize

F = Etot−µ





∞
∑

j=1

nj −N



−
∞
∑

j,k=1

ǫjk

(∫

d3rϕ∗
j(r)ϕk(r)− δjk

)

Minimize with respect to nj and ϕj

Minimization with respect to nj can have border minima

Minimization with respect to ϕj is complicated; not a
diagonalization problem.
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H2 dissociation
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Homogeneous Electron Gas
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Benchmark for finite systems

Benchmark for 150 molecules and radicals (G2/97 test set)11

6-31G* basis set, Comparison with CCSD(T)

11
JCP 128, 184103 (2008)
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Benchmark for finite systems

Benchmark for 150 molecules and radicals (G2/97 test set)11

6-31G* basis set, Comparison with CCSD(T)

Method ∆̄ ∆max δ̄ δmax δ̄e
Müller 0.55 1.23 (C2Cl4) 135.7% 438.3% (Na2) 0.0193
GU 0.26 0.79 (C2Cl4) 51.63% 114.2% (Si2) 0.0072

BBC1 0.29 0.75 (C2Cl4) 69.91% 159.1% (Na2) 0.0098
BBC2 0.18 0.50 (C2Cl4) 45.02% 125.0% (Na2) 0.0058
BBC3 0.068 0.27 (SiCl4) 18.37% 50.8% (SiH2) 0.0017
PNOF 0.102 0.42 (SiCl4) 20.84% 59.1% (SiCl4) 0.0021
PNOF0 0.072 0.32 (SiCl4) 17.11% 46.0% (Cl2) 0.0015

ML(cl. shell) 0.059 0.18 (pyridine) 11.02% 35.7% (Na2) 0.0015

MP2 0.040 0.074 (C2Cl4) 11.86% 35.7% (Li2) 0.0015
B3LYP 0.75 2.72 (SiCl4) 305.0% 2803.7% (Li2) 0.022

11
JCP 128, 184103 (2008)
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Ec for finite systems
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Atomization energies

set 1 set 2
δ̄ (%) δmax (%) δ̄ (%) δmax (%)

R(O)HF 42.4 195 (F2) 53.8 233(F2)
Mueller 32.7 138 (Na2) 40.6 130(Na2)
GU 43.7 239 (ClF3) 50.4 180(F2)

BBC1 31.0 107 (ClF3) 34.8 75(O2)
BBC2 26.9 142 (ClO) 40.1 142(F2)
BBC3 18.0 117 (Li2) 25.6 103(Li2)
PNOF 25.5 161 (ClF3) 30.4 127(F2)
PNOF0 17.5 76 (Li2) 23.9 73(Cl2)
MP2 6.24 34 (Na2) 7.94 35(Na2)
B3LYP 11.7 40 (BeH) 12.1 38(F2)

set 1: G2/97 test set, 6-31G*-basis
set 2: subset of 50 molecules, cc-pVDZ-basis
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Atomization energies
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Fundamental gap

Fundamental gap: related to the behavior of total energy for
fractional total number of particles
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Fundamental gap

Fundamental gap: related to the behavior of total energy for
fractional total number of particles

The state for M particles, N < M < N + 1, is defined as an
ensemble. For the 1RDM

γM = (1− ω)γN + ωγN+1, ω = M −N
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Fundamental gap

Fundamental gap: related to the behavior of total energy for
fractional total number of particles

The state for M particles, N < M < N + 1, is defined as an
ensemble. For the 1RDM

γM = (1− ω)γN + ωγN+1, ω = M −N

The domain of γ that can be written as ensembles is identical
to those satisfying:

∑

i

ni = M, 0 ≤ ni ≤ 1

We can find the optimal γM by minimizing E under the
above condition.

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Fundamental gap

F = Etot−µ(M)





∞
∑

j=1

nj −M



−
∞
∑

j,k=1

ǫjk

(∫

d3rϕ∗
j(r)ϕk(r)− δjk

)

µ is the chemical potential, dE/dM .12

In the exact theory, µ(M) is discontinuous and the gap equals
its discontinuity

E

N−1 N N+1 M MN

µ

∆

12
Europhys. Lett. 77, 67003 (2007)
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Results for LiH
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Europhys. Lett., 77, 67003 (2007)
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Results for LiH
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Results for LiH
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Results for LiH
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Results for LiH
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Fundamental gap

System RDMFT RDMFT Other Experiment
µ(M) step I −A theoretical

Li 0.177 0.202 0.175 0.175
Na 0.175 0.198 0.169 0.169
F 0.538 0.549 0.514
LiH 0.269, 0.293 0.271 0.286 0.271
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Application to solids

RDMFT is implemented in the Elk code.

Very promising results for fundamental gaps of
semiconductors/insulators.

Strongly correlated materials - Transition metal oxides.
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Why functionals fail for H2 dissociation?
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Unitary Transformations of degenerate φi

Explicit functionals of {ni}, {φi}:

E[{ni}, {φi}] ?
= E[γ]
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Unitary Transformations of degenerate φi

Explicit functionals of {ni}, {φi}:

E[{ni}, {φi}] ?
= E[γ]

Not necessarily if there are degeneracies in ni’s:
γ is invariant under transformations in the subspaces of
degeneracies, but not E

γ −→ −→ {ni}, {φi} −→ E
−→ {ni}, {φi}′ −→ E′

True functionals of γ: Invariant under unitary transformations
(Müller, power).
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Unitary Transformations of degenerate φi

Explicit functionals of {ni}, {φi}:

E[{ni}, {φi}] ?
= E[γ]

Not necessarily if there are degeneracies in ni’s:
γ is invariant under transformations in the subspaces of
degeneracies, but not E

γ −→ −→ {ni}, {φi} −→ E
−→ {ni}, {φi}′ −→ E′

True functionals of γ: Invariant under unitary transformations
(Müller, power).
For not invariant functionals we can define

E[γ] = min
{φi}→γ

{E[{ni}, {φi}]}
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Unitary Transformations of degenerate φi

Two degenerate orbitals φL
j (r), φ

R
j (r) located far apart

D

L R
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Unitary Transformations of degenerate φi

Two degenerate orbitals φL
j (r), φ

R
j (r) located far apart

D

L R

Delocalization Unitary Transformation (DUT):

φ̃L
j (r) =

√

1− ξj φL
j (r) +

√

ξj φR
j (r) ,

φ̃R
j (r) = −

√

ξj φL
j (r) +

√

1− ξj φR
j (r) ,

where 0 ≤ ξj ≤ 1/2 is the delocalization parameter:
⋆ ξj = 0: Localized natural orbitals.
⋆ ξj = 1/2: Fully delocalized natural orbitals.
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Unitary Transformations of degenerate φi

D

L R

Size consistency: EL+R = EL + ER
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Unitary Transformations of degenerate φi

D

L R

Size consistency: EL+R = EL + ER

Three different cases related to EL+R = EL+R(ξ):
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Unitary Transformations of degenerate φi

D

L R

Size consistency: EL+R = EL + ER

Three different cases related to EL+R = EL+R(ξ):
1 Functionals invariant under DUT, EL+R(ξ) = constant:

(Power, Müller)
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Unitary Transformations of degenerate φi

D

L R

Size consistency: EL+R = EL + ER

Three different cases related to EL+R = EL+R(ξ):
1 Functionals invariant under DUT, EL+R(ξ) = constant:

(Power, Müller)
2 Functional not invariant, EL+R(ξ) increasing function of ξ:

localization favored (ML, BBC, AC3)
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Unitary Transformations of degenerate φi

D

L R

Size consistency: EL+R = EL + ER

Three different cases related to EL+R = EL+R(ξ):
1 Functionals invariant under DUT, EL+R(ξ) = constant:

(Power, Müller)
2 Functional not invariant, EL+R(ξ) increasing function of ξ:

localization favored (ML, BBC, AC3)
3 Functional not invariant, EL+R(ξ) decreasing function of ξ:

delocalization favored (GU, PNOF)
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Unitary Transformations of degenerate φi

D

L R

Size consistency: EL+R = EL + ER

Three different cases related to EL+R = EL+R(ξ):
1 Functionals invariant under DUT, EL+R(ξ) = constant:

(Power, Müller)
2 Functional not invariant, EL+R(ξ) increasing function of ξ:

localization favored (ML, BBC, AC3)
3 Functional not invariant, EL+R(ξ) decreasing function of ξ:

delocalization favored (GU, PNOF)

Cases 1,2: size consistent;Case 3: size inconsistent
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Unitary Transformations of degenerate φi

Functional He Ne

−Ecor (Ha) ∆ (%) −Ecor (Ha) ∆ (%)

Müller 0.0481 0.0 0.3848 0.0
GU 0.0333 -17.3 0.2940 -12.57
BBC1 0.0409 0.0 0.3203 0.0
BBC2 0.0409 0.0 0.3052 0.0
BBC3 0.0373 4.02 0.2715 0.495
PNOF 0.0294 -16.8 0.2572 -12.01
PNOF0 0.0294 -7.48 0.2534 -3.68
ML 0.0418 0.0 0.3253 0.0
BBC++ 0.0403 0.0 0.2645 0.0
Power 0.0116 0.0 0.1127 0.0
AC3 0.0323 0.0 0.2715 0.0

JCP, 132, 084105 (2010).
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Unitary Transformations of degenerate φi
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Spin constancy

Closed shell system breaks into two open shell fragments.
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Spin constancy

Closed shell system breaks into two open shell fragments.

We restrict to doublet states: Sz = ±1/2.
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Spin constancy

Closed shell system breaks into two open shell fragments.

We restrict to doublet states: Sz = ±1/2.
Fractional spin state −1/2 < s < 1/2:

γs = (1− ω)γ1/2 + ωγ−1/2, with ω = 1/2 − s (1)

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Spin constancy

Closed shell system breaks into two open shell fragments.

We restrict to doublet states: Sz = ±1/2.
Fractional spin state −1/2 < s < 1/2:

γs = (1− ω)γ1/2 + ωγ−1/2, with ω = 1/2 − s (1)

Spin constancy: Doublet fragments should satisfy

E[γs] = E[γ1/2] = E[γ−1/2], ∀s (2)
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Spin constancy

Closed shell system breaks into two open shell fragments.

We restrict to doublet states: Sz = ±1/2.
Fractional spin state −1/2 < s < 1/2:

γs = (1− ω)γ1/2 + ωγ−1/2, with ω = 1/2 − s (1)

Spin constancy: Doublet fragments should satisfy

E[γs] = E[γ1/2] = E[γ−1/2], ∀s (2)

The domain of the ensembles satisfying Eq. 1 is identical to
those satisfying

∑

i

n↑
i = N/2 + s,

∑

i

n↓
i = N/2− s, 0 ≤ n

↑(↓)
i ≤ 1
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Spin constancy

∑

i

n↑
i = N/2 + s,

∑

i

n↓
i = N/2− s, 0 ≤ n

↑(↓)
i ≤ 1

We can find optimal γs by minimizing the total energy under
the above conditions

Alternatively we can build the ensemble using the optimal
γ1/2, γ−1/2.
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Spin constancy

∑

i

n↑
i = N/2 + s,

∑

i

n↓
i = N/2− s, 0 ≤ n

↑(↓)
i ≤ 1

We can find optimal γs by minimizing the total energy under
the above conditions

Alternatively we can build the ensemble using the optimal
γ1/2, γ−1/2.

Spin constancy error: 2(E(s = 0)− E(s = 1/2)

If the aforementioned size inconsistency is not present:
Dissociation error = Spin constancy error
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Spin constancy
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Left panels: H2 dissociation (black: RDMFT, red dotted: MRDCI).

Right pannels: E(s) (dotted: minimization, green: ensemble).

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Müller type functionals are the most widely used functionals
in RDMFT at the moment

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Müller type functionals are the most widely used functionals
in RDMFT at the moment

H2 dissociation is well described

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Müller type functionals are the most widely used functionals
in RDMFT at the moment

H2 dissociation is well described

Size consistency and fractional spin behavior issues affect
dissociation problem.

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Müller type functionals are the most widely used functionals
in RDMFT at the moment

H2 dissociation is well described

Size consistency and fractional spin behavior issues affect
dissociation problem.

Successful application to total and atomization energies of
molecules

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Müller type functionals are the most widely used functionals
in RDMFT at the moment

H2 dissociation is well described

Size consistency and fractional spin behavior issues affect
dissociation problem.

Successful application to total and atomization energies of
molecules

RDMFT functionals reproduce energy derivative
discontinuities: fundamental gap

Electronic Structure with the Elk Code, Lausanne, July 22, 2011



Connection to Hartree Fock
RDMFT

Functionals and Minimization
Applications/properties

Prototype systems
Total and atomization energies
Fundamental gap
size consistency/fractional spins

Summary

RDMFT: a promising way to approximate electronic
correlations

The goal: not to replace DFT but to give answers for
problems the DFT results are not satisfactory

Müller type functionals are the most widely used functionals
in RDMFT at the moment

H2 dissociation is well described

Size consistency and fractional spin behavior issues affect
dissociation problem.

Successful application to total and atomization energies of
molecules

RDMFT functionals reproduce energy derivative
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Gaps for solids (including Mott insulators) are well reproduced

Electronic Structure with the Elk Code, Lausanne, July 22, 2011


	Outline
	Connection to Hartree Fock
	RDMFT
	Density matrices
	Total energy functional
	Foundations

	Functionals and Minimization
	Functionals
	Minimization

	Applications/properties
	Prototype systems
	Total and atomization energies
	Fundamental gap
	size consistency/fractional spins


