Introduction to the Reduced Density Matrix Functional Theory

N. N. Lathiotakis

TPCI, National Hellenic Research Foundation, Athens

July 22, 2011

Electronic Structure with the Elk Code, Lausanne, July 22, 2011

Outline

- Connection to Hartree Fock
- Oensity matrices
- Seduced Density Matrix Functional Theory (RDMFT)
- Functionals and Minimization
- Application to prototype systems: H₂ dissociation, Homogeneous electron gas
- Total and atomization energies
- Fundamental gap
- Size consistency / Fractional spin

Hartree Fock

• Wave function is one Slater Determinant:

$$\Phi(\mathbf{x}_1, \mathbf{x}_2, \cdots \mathbf{x}_N) = \begin{vmatrix} \varphi_1(\mathbf{x}_1) & \varphi_1(\mathbf{x}_2) & \cdots & \varphi_1(\mathbf{x}_N) \\ \varphi_2(\mathbf{x}_1) & \varphi_2(\mathbf{x}_2) & \cdots & \varphi_2(\mathbf{x}_N) \\ \vdots & \vdots & \ddots & \vdots \\ \varphi_N(\mathbf{x}_1) & \varphi_N(\mathbf{x}_2) & \cdots & \varphi_N(\mathbf{x}_N) \end{vmatrix}$$

• We need to minimize:

$$E_{\rm tot} = \frac{\langle \Phi | \hat{H} | \Phi \rangle}{\langle \Phi | \Phi \rangle}$$

 Minimization chooses N orbitals out an infinite dimension space (or of dimension M > N for practical applications).

Energy in Hartree-Fock

Spin-orbitals $\varphi(\mathbf{x})=\varphi(\mathbf{r})\alpha(\omega).$ For spin compensated systems:

$$E_{\text{tot}} = 2\sum_{j=1}^{N/2} h_{jj}^{(1)} + 2\sum_{j,k=1}^{N/2} J_{jk} - \sum_{j,k=1}^{N/2} K_{jk}$$
$$h_{jj}^{(1)} = \int d^3 \mathbf{r} \, \varphi_j^*(\mathbf{r}) \left[-\frac{1}{2} \nabla_{\mathbf{r}}^2 + V(\mathbf{r}) \right] \varphi_j(\mathbf{r})$$
$$J_{jk} = \int d^3 \mathbf{r} \, \int d^3 \mathbf{r}' \frac{|\varphi_j(\mathbf{r})|^2 \, |\varphi_k(\mathbf{r}')|^2}{|\mathbf{r} - \mathbf{r}'|}$$
$$K_{jk} = \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \frac{\varphi_j(\mathbf{r}) \, \varphi_j^*(\mathbf{r}') \, \varphi_k(\mathbf{r}') \, \varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

Energy in Hartree-Fock

Spin-orbitals $\varphi(\mathbf{x})=\varphi(\mathbf{r})\alpha(\omega).$ For spin compensated systems:

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$
$$h_{jj}^{(1)} = \int d^3 \mathbf{r} \, \varphi_j^*(\mathbf{r}) \left[-\frac{1}{2} \nabla_{\mathbf{r}}^2 + V(\mathbf{r}) \right] \varphi_j(\mathbf{r})$$
$$J_{jk} = \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \, \frac{|\varphi_j(\mathbf{r})|^2 |\varphi_k(\mathbf{r}')|^2}{|\mathbf{r} - \mathbf{r}'|}$$
$$K_{jk} = \int d^3 \mathbf{r} \int d^3 \mathbf{r}' \, \frac{\varphi_j(\mathbf{r}) \, \varphi_j^*(\mathbf{r}') \, \varphi_k(\mathbf{r}') \, \varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

Where n_i and n_k occupation numbers

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

• Assume that this functional is minimized w.r.t. n_j , φ_j .

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

• Assume that this functional is minimized w.r.t. n_j , φ_j .

• It is not bound!

 n_i should satisfy extra conditions.

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

• Assume that this functional is minimized w.r.t. n_j , φ_j .

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

- Assume that this functional is minimized w.r.t. n_j , φ_j .
- N-representability conditions of Coleman:

$$0 \le n_j \le 1$$
, and $2\sum_{j=1}^{\infty} n_j = N$

The first reflects the Pauli principle and the second fixes the number of particles.

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

- Assume that this functional is minimized w.r.t. n_j , φ_j .
- N-representability conditions of Coleman:

$$0 \le n_j \le 1$$
, and $2\sum_{j=1}^{\infty} n_j = N$

The first reflects the Pauli principle and the second fixes the number of particles.

• There no extrema between 0 and 1. It is monotonous selecting either 0 or 1.

Hartree Fock Functional in RDMFT

$$E_{\text{tot}} = 2\sum_{j=1}^{\infty} n_j h_{jj}^{(1)} + 2\sum_{j,k=1}^{\infty} n_j n_k J_{jk} - \sum_{j,k=1}^{\infty} n_j n_k K_{jk}$$

- Assume that this functional is minimized w.r.t. n_j , φ_j .
- N-representability conditions of Coleman:

$$0 \le n_j \le 1$$
, and $2\sum_{j=1}^{\infty} n_j = N$

The first reflects the Pauli principle and the second fixes the number of particles.

- There no extrema between 0 and 1. It is monotonous selecting either 0 or 1.
- This functional collapses to Hartree-Fock Theory

Density matrices Total energy functional Foundations

Density matrices

• *N*-body density matrix

$$\Gamma^{(N)}(\mathbf{r}_{1},\mathbf{r}_{2}..\mathbf{r}_{N};\mathbf{r}_{1}',\mathbf{r}_{2}'..\mathbf{r}_{N}') = \Psi^{*}(\mathbf{r}_{1}',\mathbf{r}_{2}'..\mathbf{r}_{N}') \Psi(\mathbf{r}_{1},\mathbf{r}_{2}..\mathbf{r}_{N})$$

• Reduce the order of the density matrix

$$\Gamma^{(p)}(\mathbf{r}_1,..\mathbf{r}_p;\mathbf{r}'_1,..\mathbf{r}'_p) = \begin{pmatrix} N \\ p \end{pmatrix} \int d^3 r_{p+1}..d^3 r_N \Psi^*(\mathbf{r}'_1,..\mathbf{r}'_p,\mathbf{r}_{p+1}..\mathbf{r}_N) \Psi(\mathbf{r}_1,..\mathbf{r}_N)$$

Density matrices Total energy functional Foundations

Density matrices

• N-body density matrix

$$\Gamma^{(N)}(\mathbf{r}_{1},\mathbf{r}_{2}..\mathbf{r}_{N};\mathbf{r}_{1}',\mathbf{r}_{2}'..\mathbf{r}_{N}') = \Psi^{*}(\mathbf{r}_{1}',\mathbf{r}_{2}'..\mathbf{r}_{N}') \Psi(\mathbf{r}_{1},\mathbf{r}_{2}..\mathbf{r}_{N})$$

• Reduce the order of the density matrix

$$\Gamma^{(p)}(\mathbf{r}_1,..\mathbf{r}_p;\mathbf{r}'_1,..\mathbf{r}'_p) = \begin{pmatrix} N \\ p \end{pmatrix} \int d^3 r_{p+1}..d^3 r_N \Psi^*(\mathbf{r}'_1,..\mathbf{r}'_p,\mathbf{r}_{p+1}..\mathbf{r}_N) \Psi(\mathbf{r}_1,..\mathbf{r}_N)$$

Recurrence relation

$$\Gamma^{(p-1)}(\mathbf{r}_1, ..\mathbf{r}_{p-1}; \mathbf{r}'_1, ..\mathbf{r}'_{p-1}) = \frac{p}{N-p+1} \int d^3 r_p \, \Gamma^{(p)}(\mathbf{r}_1, ..\mathbf{r}_p; \mathbf{r}'_1, ..\mathbf{r}'_{p-1}, \mathbf{r}_p)$$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm int}$$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm int}$$

$$\boldsymbol{E}_{\rm kin} = \int d^3r \, d^3r' \, \delta(\mathbf{r} - \mathbf{r}') \left(-\frac{\nabla^2}{2}\right) \boldsymbol{\gamma}(\mathbf{r}; \mathbf{r}')$$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm int}$$

$$E_{\text{ext}} = \int d^3 r \, v_{\text{ext}}(\mathbf{r}) \, \gamma(\mathbf{r}; \mathbf{r})$$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm int}$$

$$E_{\rm int} = \int d^3r \, d^3r' \frac{\Gamma^{(2)}(\mathbf{r}, \mathbf{r}'; \mathbf{r}, \mathbf{r}')}{\mid \mathbf{r} - \mathbf{r}' \mid}$$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

• Total energy

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm int}$$

is a functional of $\Gamma^{(2)}$

Density matrices Total energy functional Foundations

Total energy

• One-body density matrix

$$\Gamma^{(1)}(\mathbf{r};\mathbf{r}') = \frac{2}{N-1} \int d^3 r_2 \, \Gamma^{(2)}(\mathbf{r},\mathbf{r}_2;\mathbf{r}',\mathbf{r}_2) =: \gamma(\mathbf{r};\mathbf{r}')$$

• Total energy

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm int}$$

is a functional of $\Gamma^{(2)}$

• Why don't we minimize the total energy with respect to $\Gamma^{(2)}$?

Density matrices Total energy functional Foundations

N-representability

Remember

$$\Gamma^{(2)}(\mathbf{r}_1, \mathbf{r}_2; \mathbf{r}_1', \mathbf{r}_2') = \frac{N(N-1)}{2} \int d^3 r_3 .. d^3 r_N \Psi^*(\mathbf{r}_1', \mathbf{r}_2', \mathbf{r}_3 .. \mathbf{r}_N) \Psi(\mathbf{r}_1 .. \mathbf{r}_N)$$

with an antisymmetric, normalized wave function $\boldsymbol{\Psi}$

- \bullet For $\Gamma^{(2)}$ only several necessary $N\text{-}{\rm representability}$ conditions are ${\rm known}^1$
- Not sufficient leading to too small total energies in the minimization

¹ JCP **128**, 164113 (2008)

Density matrices Total energy functional Foundations

N-representability

- For γ the $N\text{-representability conditions are known and quite simple$
- Diagonalization of γ

$$\gamma(\mathbf{r};\mathbf{r}') = \sum_{j=1}^{\infty} n_j \, \varphi_j^*(\mathbf{r}') \, \varphi_j(\mathbf{r})$$

Occupation numbers: $0 \le n_j \le 1$, $\sum_j n_j = N$ Natural orbitals:

$$\int d^3r \,\varphi_j(\mathbf{r}) \,\varphi_k^*(\mathbf{r}) = \delta_{jk}$$

Density matrices Total energy functional Foundations

N-representability

- For γ the $N\text{-representability conditions are known and quite simple$
- Diagonalization of γ

$$\gamma(\mathbf{r};\mathbf{r}') = \sum_{j=1}^{\infty} n_j \, \varphi_j^*(\mathbf{r}') \, \varphi_j(\mathbf{r})$$

Occupation numbers: $0 \le n_j \le 1$, $\sum_j n_j = N$ Natural orbitals:

$$\int d^3r \,\varphi_j(\mathbf{r}) \,\varphi_k^*(\mathbf{r}) = \delta_{jk}$$

• Choice between knowing the functional dependence and knowing the *N*-representability conditions

Density matrices Total energy functional Foundations

RDMFT Foundations

 Gilbert's Theorem:² Every ground-state observable is a functional of the ground-state one-body reduced density matrix

$$\gamma_{gs}(\mathbf{r};\mathbf{r}') \stackrel{1-1}{\longleftrightarrow} \Psi_{gs}(\mathbf{r}_1,\mathbf{r}_2...\mathbf{r}_N)$$

- No 1-1 correspondence to external potential as in DFT
- Idempotency: for non-interacting particles $n_j = 0, 1$, no Kohn-Sham system

²T. Gilbert Phys. Rev. B **12**, 2111 (1975)

Density matrices Total energy functional Foundations

RDMFT Foundations

 Gilbert's Theorem:² Every ground-state observable is a functional of the ground-state one-body reduced density matrix

$$\gamma_{gs}(\mathbf{r};\mathbf{r}') \stackrel{1-1}{\longleftrightarrow} \Psi_{gs}(\mathbf{r}_1,\mathbf{r}_2...\mathbf{r}_N)$$

- No 1-1 correspondence to external potential as in DFT
- Idempotency: for non-interacting particles $n_j = 0, 1$, no Kohn-Sham system
- Total energy

$$E_{\rm tot} = E_{\rm kin} + E_{\rm ext} + E_{\rm H} + \frac{E_{\rm xc}}{E_{\rm xc}}$$

Exchange-correlation energy does not contain any kinetic energy contributions

²T. Gilbert Phys. Rev. B **12**, 2111 (1975)

Functionals Minimization

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

• Hartree-Fock:
$$f(n_j, n_k) = n_j n_k$$

• Müller functional³:
$$f(n_j, n_k) = \sqrt{n_j n_k}$$

• Goedecker-Umrigar⁴:
$$f(n_j, n_k) = \sqrt{n_j n_k} (1 - \delta_{jk}) + n_j^2 \delta_{jk}$$

³A. Müller, Phys. Lett. A **105**, 446 (1984); M. A. Buijse, E. J. Baerends, Mol. Phys. **100**, 401 (2002)

⁴S. Goedecker, C. J. Umrigar, Phys. Rev. Lett. **81**, 866 (1998).

Functionals Minimization

Müller type functionals

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$

• BBC1⁴:

$$f(n_j, n_k) = \begin{cases} -\sqrt{n_j n_k} & j \neq k \text{ both weakly occupied} \\ \sqrt{n_j n_k} & \text{otherwise.} \end{cases}$$

⁴O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. **122**, 204102 (2005)

Functionals Minimization

Müller type functionals

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$

• BBC2⁴:

$$f(n_j, n_k) = \begin{cases} -\sqrt{n_j n_k} & j \neq k \text{ both weakly occupied} \\ n_j n_k & j \neq k \text{ both strongly occupied} \\ \sqrt{n_j n_k} & \text{otherwise.} \end{cases}$$

⁴O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. **122**, 204102 (2005)

Functionals Minimization

Müller type functionals

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

• Hartree-Fock: $f(n_j, n_k) = n_j n_k$

- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$ • BBC3⁴:

$$f(n_j, n_k) = \begin{cases} -\sqrt{n_j n_k} & j \neq k \text{ both weakly occupied} \\ n_j n_k & \begin{cases} j \neq k \text{ both strongly occupied} \\ j(k) \text{ anti-bonding}, k(j) \text{ not bonding} \\ n_j^2 & j = k \\ \sqrt{n_j n_k} & \text{ otherwise.} \end{cases}$$

⁴O. Gritsenko, K. Pernal, E.J. Baerends, J. Chem. Phys. **122**, 204102 (2005)

Functionals Minimization

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$
- BBC1, BBC2, and BBC3
- PNOF0: Cummulant expansion; BBC1 with removal of j = k terms PNOF: additional term to avoid pinned states; PNOF1-5 ⁵

⁵Piris, Int. J. Quant. Chem. **106**, 1093 (2006); Piris, et al, JCP **134**, 164102 (2011)

Functionals Minimization

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$
- BBC1, BBC2, and BBC3
- PNOF0: BBC1 with removal of j = k terms
- AC3: Similar to BBC3 with C2,C3 corrections analytic⁶

⁶Rohr, et al, JCP **129**, 164105 (2008).

Functionals Minimization

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$
- BBC1, BBC2, and BBC3
- PNOF0: BBC1 with removal of j = k terms
- AC3: Similar to BBC3 with C2,C3 corrections analytic
- ML: Pade approximation for f, fit for a set of molecules⁷

⁷Marques, Lathiotakis, PRA **77**, 032509 (2008).

Functionals Minimization

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$
- BBC1, BBC2, and BBC3
- PNOF0: BBC1 with removal of j = k terms
- AC3: Similar to BBC3 with C2,C3 corrections analytic
- ML: Pade approximation for f, fit for a set of molecules.
- Power Functional⁸: $f(n_j, n_k) = (n_j n_k)^{\alpha}$

⁸S. Sharma et al, PRB, **78**, 201103(R) (2008).

$$E_{xc} = -\frac{1}{2} \sum_{j,k=1}^{\infty} f(n_j, n_k) \int d^3r d^3r' \frac{\varphi_j(\mathbf{r})\varphi_j^*(\mathbf{r}')\varphi_k(\mathbf{r}')\varphi_k^*(\mathbf{r})}{|\mathbf{r} - \mathbf{r}'|}$$

- Hartree-Fock: $f(n_j, n_k) = n_j n_k$
- Müller functional: $f(n_j, n_k) = \sqrt{n_j n_k}$
- Goedecker-Umrigar: $f(n_j, n_k) = \sqrt{n_j n_k} (1 \delta_{jk}) + n_j^2 \delta_{jk}$
- BBC1, BBC2, and BBC3
- PNOF0: BBC1 with removal of j = k terms
- AC3: Similar to BBC3 with C2,C3 corrections analytic
- ML: Pade approximation for f, fit for a set of molecules
- Power Functional: $f(n_j, n_k) = (n_j n_k)^{\alpha}$
- Range separated hybrid GGA-Müller functional¹⁰

¹⁰D.R. Rohr, J. Toulouse, K. Pernal, PRA, **82**, 052502 (2010).

Functionals Minimization

Minimization

• Minimize

$$F = E_{\text{tot}} - \mu \left(\sum_{j=1}^{\infty} n_j - N \right) - \sum_{j,k=1}^{\infty} \epsilon_{jk} \left(\int d^3 r \varphi_j^*(\mathbf{r}) \varphi_k(\mathbf{r}) - \delta_{jk} \right)$$

- Minimize with respect to n_j and φ_j
- Minimization with respect to n_i can have border minima

Functionals Minimization

Minimization

Minimize

$$F = E_{\text{tot}} - \mu \left(\sum_{j=1}^{\infty} n_j - N \right) - \sum_{j,k=1}^{\infty} \epsilon_{jk} \left(\int d^3 r \varphi_j^*(\mathbf{r}) \varphi_k(\mathbf{r}) - \delta_{jk} \right)$$

- Minimize with respect to n_j and φ_j
- Minimization with respect to n_j can have border minima
- Minimization with respect to φ_j is complicated; not a diagonalization problem.

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

H₂ dissociation

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Homogeneous Electron Gas

PRB 75, 195120 (2007); PRA 79, 040501(R) (2009)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Benchmark for finite systems

- Benchmark for 150 molecules and radicals $(G2/97 \text{ test set})^{11}$
- 6-31G* basis set, Comparison with CCSD(T)

¹¹ JCP **128**, 184103 (2008)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Benchmark for finite systems

- Benchmark for 150 molecules and radicals (G2/97 test set)¹¹
- 6-31G* basis set, Comparison with CCSD(T)

Method	$\bar{\Delta}$	Δ_{\max}	$\overline{\delta}$	$\delta_{ m max}$	$\overline{\delta}_{ ext{e}}$
Müller	0.55	$1.23 (C_2 Cl_4)$	135.7%	438.3% (Na $_2$)	0.0193
GU	0.26	$0.79 (C_2 Cl_4)$	51.63%	114.2% (Si $_2$)	0.0072
BBC1	0.29	$0.75 (C_2 Cl_4)$	69.91%	159.1% (Na $_2$)	0.0098
BBC2	0.18	$0.50 (C_2 Cl_4)$	45.02%	125.0% (Na $_2$)	0.0058
BBC3	0.068	0.27 (SiCl ₄)	18.37%	50.8% (SiH ₂)	0.0017
PNOF	0.102	0.42 (SiCl ₄)	20.84%	59.1% (SiCl ₄)	0.0021
PNOF0	0.072	0.32 (SiCl ₄)	17.11%	46.0% (Cl ₂)	0.0015
ML(cl. shell)	0.059	0.18 (pyridine)	11.02%	35.7% (Na $_2$)	0.0015
MP2	0.040	$0.074 (C_2 Cl_4)$	11.86%	35.7% (Li ₂)	0.0015
B3LYP	0.75	2.72 (SiCl ₄)	305.0%	2803.7% (Li ₂)	0.022

¹¹ JCP **128**, 184103 (2008)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

E_c for finite systems

Error in correlation energy (reference CCSD(T))

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Atomization energies

		set 1	set 2	
	$ar{\delta}$ (%)	$\delta_{ m max}$ (%)	$ar{\delta}$ (%)	$\delta_{ m max}$ (%)
R(O)HF	42.4	195 (F_2)	53.8	$233(F_2)$
Mueller	32.7	138 (Na $_2$)	40.6	$130(Na_2)$
GU	43.7	239 (CIF_3)	50.4	$180(F_2)$
BBC1	31.0	107 (CIF_3)	34.8	$75(O_2)$
BBC2	26.9	142 (CIO)	40.1	$142(F_2)$
BBC3	18.0	117 (Li_2)	25.6	$103(Li_2)$
PNOF	25.5	161 (CIF_3)	30.4	$127(F_2)$
PNOF0	17.5	76 (Li ₂)	23.9	$73(Cl_2)$
MP2	6.24	34 (Na $_2$)	7.94	$35(Na_2)$
B3LYP	11.7	40 (BeH)	12.1	$38(F_2)$

set 1: G2/97 test set, 6-31G*-basis

set 2: subset of 50 molecules, cc-pVDZ-basis

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Atomization energies

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Fundamental gap

• Fundamental gap: related to the behavior of total energy for fractional total number of particles

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Fundamental gap

- Fundamental gap: related to the behavior of total energy for fractional total number of particles
- $\bullet\,$ The state for M particles, N < M < N+1, is defined as an ensemble. For the 1RDM

$$\gamma^{M} = (1 - \omega)\gamma^{N} + \omega\gamma^{N+1}, \quad \omega = M - N$$

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Fundamental gap

- Fundamental gap: related to the behavior of total energy for fractional total number of particles
- $\bullet\,$ The state for M particles, N < M < N+1, is defined as an ensemble. For the 1RDM

$$\gamma^{M} = (1 - \omega)\gamma^{N} + \omega\gamma^{N+1}, \quad \omega = M - N$$

• The domain of γ that can be written as ensembles is identical to those satisfying:

$$\sum_{i} n_i = M, \quad 0 \le n_i \le 1$$

 $\bullet\,$ We can find the optimal γ^M by minimizing E under the above condition.

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functionals and Minimization Applications/properties

Fundamental gap

$$F = E_{\text{tot}} - \mu(M) \left(\sum_{j=1}^{\infty} n_j - M \right) - \sum_{j,k=1}^{\infty} \epsilon_{jk} \left(\int d^3 r \varphi_j^*(\mathbf{r}) \varphi_k(\mathbf{r}) - \delta_{jk} \right)$$

- μ is the chemical potential, dE/dM.¹²
- $\bullet\,$ In the exact theory, $\mu(M)$ is discontinuous and the gap equals its discontinuity

¹²Europhys. Lett. **77**, 67003 (2007)

M

Prototype systems Total and atomization energies **Fundamental gap** size consistency/fractional spins

Results for LiH

The discontinuity of μ at N = 4 electrons for LiH¹³

¹³Europhys. Lett., **77**, 67003 (2007)

Prototype systems Total and atomization energies **Fundamental gap** size consistency/fractional spins

Results for LiH

The discontinuity of μ at N = 4 electrons for LiH¹³

¹³Europhys. Lett., **77**, 67003 (2007)

Prototype systems Total and atomization energies **Fundamental gap** size consistency/fractional spins

Results for LiH

The discontinuity of μ at N = 4 electrons for LiH¹³

¹³Europhys. Lett., **77**, 67003 (2007)

Prototype systems Total and atomization energies **Fundamental gap** size consistency/fractional spins

Results for LiH

The discontinuity of μ at N = 4 electrons for LiH¹³

 $^{13}{\rm Europhys.}$ Lett., **77**, 67003 (2007)

Prototype systems Total and atomization energies **Fundamental gap** size consistency/fractional spins

Results for LiH

The discontinuity of μ at N = 4 electrons for LiH¹³

 $^{13}{\rm Europhys.}$ Lett., **77**, 67003 (2007)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Fundamental gap

System	RDMFT	RDMFT	Other	Experiment
	$\mu(M)$ step	I - A	theoretical	
Li	0.177	0.202	0.175	0.175
Na	0.175	0.198	0.169	0.169
F	0.538	0.549		0.514
LiH	0.269, 0.293	0.271	0.286	0.271

Electronic Structure with the Elk Code, Lausanne, July 22, 2011

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Application to solids

- RDMFT is implemented in the Elk code.
- Very promising results for fundamental gaps of semiconductors/insulators.
- Strongly correlated materials Transition metal oxides.

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Why functionals fail for H₂ dissociation?

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

• Explicit functionals of $\{n_i\}$, $\{\phi_i\}$:

 $E[\{n_i\},\{\phi_i\}] \stackrel{?}{=} E[\gamma]$

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

• Explicit functionals of $\{n_i\}$, $\{\phi_i\}$:

 $E[\{n_i\}, \{\phi_i\}] \stackrel{?}{=} E[\gamma]$

• Not necessarily if there are degeneracies in n_i 's: γ is invariant under transformations in the subspaces of degeneracies, but not E

$$\gamma \longrightarrow \begin{array}{ccc} & \longrightarrow & \{n_i\}, \{\phi_i\} & \longrightarrow & E \\ & \longrightarrow & \{n_i\}, \{\phi_i\}' & \longrightarrow & E' \end{array}$$

 True functionals of γ: Invariant under unitary transformations (Müller, power).

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

• Explicit functionals of $\{n_i\}$, $\{\phi_i\}$:

 $E[\{n_i\}, \{\phi_i\}] \stackrel{?}{=} E[\gamma]$

• Not necessarily if there are degeneracies in n_i 's: γ is invariant under transformations in the subspaces of degeneracies, but not E

$$\gamma \longrightarrow \begin{array}{ccc} & \longrightarrow & \{n_i\}, \{\phi_i\} & \longrightarrow & E \\ & \longrightarrow & \{n_i\}, \{\phi_i\}' & \longrightarrow & E' \end{array}$$

- True functionals of γ: Invariant under unitary transformations (Müller, power).
- For not invariant functionals we can define

$$E[\gamma] = \min_{\{\phi_i\} \to \gamma} \{ E[\{n_i\}, \{\phi_i\}] \}$$

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

• Two degenerate orbitals $\phi_{i}^{L}(\mathbf{r})$, $\phi_{i}^{R}(\mathbf{r})$ located far apart

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

• Two degenerate orbitals $\phi_{i}^{L}(\mathbf{r})$, $\phi_{i}^{R}(\mathbf{r})$ located far apart

• Delocalization Unitary Transformation (DUT):

$$ilde{\phi}_{j}^{L}({f r}) \;\; = \;\; \sqrt{1-\xi_{j}} \;\;\; \phi_{j}^{L}({f r}) \;\; + \;\;\; \sqrt{\xi_{j}} \;\;\;\; \phi_{j}^{R}({f r}) \,,$$

 $ilde{\phi}^R_j({f r}) \;\; = \;\; -\sqrt{\xi_j} \;\;\; \phi^L_j({f r}) \;\; + \;\; \sqrt{1-\xi_j} \;\;\; \phi^R_j({f r}) \,,$

where $0 \le \xi_j \le 1/2$ is the delocalization parameter:

- ★ $\xi_j = 0$: Localized natural orbitals.
- * $\xi_j = 1/2$: Fully delocalized natural orbitals.

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

• Size consistency: $E_{L+R} = E_L + E_R$

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

- Size consistency: $E_{L+R} = E_L + E_R$
- Three different cases related to $E_{L+R} = E_{L+R}(\xi)$:

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

- Size consistency: $E_{L+R} = E_L + E_R$
- Three different cases related to $E_{L+R} = E_{L+R}(\xi)$:
 - Functionals invariant under DUT, $E_{L+R}(\xi) = \text{constant:}$ (Power, Müller)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

- Size consistency: $E_{L+R} = E_L + E_R$
- Three different cases related to $E_{L+R} = E_{L+R}(\xi)$:
 - Functionals invariant under DUT, $E_{L+R}(\xi) = \text{constant:}$ (Power, Müller)
 - **②** Functional not invariant, $E_{L+R}(\xi)$ increasing function of ξ : localization favored (ML, BBC, AC3)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

- Size consistency: $E_{L+R} = E_L + E_R$
- Three different cases related to $E_{L+R} = E_{L+R}(\xi)$:
 - Functionals invariant under DUT, $E_{L+R}(\xi) = \text{constant:}$ (Power, Müller)
 - **②** Functional not invariant, $E_{L+R}(\xi)$ increasing function of ξ : localization favored (ML, BBC, AC3)
 - Superior Functional not invariant, E_{L+R}(ξ) decreasing function of ξ: delocalization favored (GU, PNOF)

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

- Size consistency: $E_{L+R} = E_L + E_R$
- Three different cases related to $E_{L+R} = E_{L+R}(\xi)$:
 - Functionals invariant under DUT, $E_{L+R}(\xi) = \text{constant:}$ (Power, Müller)
 - **②** Functional not invariant, $E_{L+R}(\xi)$ increasing function of ξ : localization favored (ML, BBC, AC3)
 - Summariant invariant, $E_{L+R}(\xi)$ decreasing function of ξ : delocalization favored (GU, PNOF)
- Cases 1,2: size consistent; Case 3: size inconsistent

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Unitary Transformations of degenerate ϕ_i

Functional	He		Ne	
	$-E_{ m cor}$ (Ha)	Δ (%)	$-E_{ m cor}$ (Ha)	Δ (%)
Müller	0.0481	0.0	0.3848	0.0
GU	0.0333	-17.3	0.2940	-12.57
BBC1	0.0409	0.0	0.3203	0.0
BBC2	0.0409	0.0	0.3052	0.0
BBC3	0.0373	4.02	0.2715	0.495
PNOF	0.0294	-16.8	0.2572	-12.01
PNOF0	0.0294	-7.48	0.2534	-3.68
ML	0.0418	0.0	0.3253	0.0
BBC++	0.0403	0.0	0.2645	0.0
Power	0.0116	0.0	0.1127	0.0
AC3	0.0323	0.0	0.2715	0.0

JCP, **132**, 084105 (2010).

Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functionals and Minimization Applications/properties

Spin constancy

• Closed shell system breaks into two open shell fragments.

Connection to Hartree Fock	Prototype systems
RDMFT	Total and atomization energies
Functionals and Minimization	Fundamental gap
Applications/properties	size consistency/fractional spins

Spin constancy

- Closed shell system breaks into two open shell fragments.
- We restrict to doublet states: $S_z = \pm 1/2$.

Connection to Hartree Fock	Prototype systems
RDMFT	Total and atomization energies
Functionals and Minimization	Fundamental gap
Applications/properties	size consistency/fractional spins

Spin constancy

- Closed shell system breaks into two open shell fragments.
- We restrict to doublet states: $S_z = \pm 1/2$.
- Fractional spin state -1/2 < s < 1/2:

$$\gamma^{s} = (1 - \omega)\gamma^{1/2} + \omega\gamma^{-1/2}$$
, with $\omega = 1/2 - s$ (1)
Connection to Hartree Fock	Prototype systems
RDMFT	Total and atomization energies
Functionals and Minimization	Fundamental gap
Applications/properties	size consistency/fractional spins

Spin constancy

- Closed shell system breaks into two open shell fragments.
- We restrict to doublet states: $S_z = \pm 1/2$.
- Fractional spin state -1/2 < s < 1/2:

$$\gamma^s = (1 - \omega)\gamma^{1/2} + \omega\gamma^{-1/2}$$
, with $\omega = 1/2 - s$ (1)

• Spin constancy: Doublet fragments should satisfy

$$E[\gamma^{s}] = E[\gamma^{1/2}] = E[\gamma^{-1/2}], \quad \forall s$$
 (2)

Connection to Hartree Fock	Prototype systems
RDMFT	Total and atomization energies
Functionals and Minimization	Fundamental gap
Applications/properties	size consistency/fractional spins

Spin constancy

- Closed shell system breaks into two open shell fragments.
- We restrict to doublet states: $S_z = \pm 1/2$.
- Fractional spin state -1/2 < s < 1/2:

$$\gamma^{s} = (1 - \omega)\gamma^{1/2} + \omega\gamma^{-1/2}$$
, with $\omega = 1/2 - s$ (1)

- Spin constancy: Doublet fragments should satisfy $E[\gamma^s]=E[\gamma^{1/2}]=E[\gamma^{-1/2}],\quad \forall s$
- The domain of the ensembles satisfying Eq. 1 is identical to those satisfying

$$\sum_{i} n_i^{\uparrow} = N/2 + s, \quad \sum_{i} n_i^{\downarrow} = N/2 - s, \quad 0 \le n_i^{\uparrow(\downarrow)} \le 1$$

(2)

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functional spins RDMFT Functional spins RDMFT Functional spins Size consistency/fractional spins

Spin constancy

$$\sum_i n_i^{\uparrow} = N/2 + s, \quad \sum_i n_i^{\downarrow} = N/2 - s, \quad 0 \le n_i^{\uparrow(\downarrow)} \le 1$$

- $\bullet\,$ We can find optimal γ^s by minimizing the total energy under the above conditions
- Alternatively we can build the ensemble using the optimal $\gamma^{1/2}$, $\gamma^{-1/2}.$

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functional spins RDMFT Functional spins RDMFT Functional spins Size consistency/fractional spins

Spin constancy

$$\sum_i n_i^{\uparrow} = N/2 + s, \quad \sum_i n_i^{\downarrow} = N/2 - s, \quad 0 \le n_i^{\uparrow(\downarrow)} \le 1$$

- $\bullet\,$ We can find optimal γ^s by minimizing the total energy under the above conditions
- Alternatively we can build the ensemble using the optimal $\gamma^{1/2}$, $\gamma^{-1/2}.$
- Spin constancy error: 2(E(s=0) E(s=1/2))
- If the aforementioned size inconsistency is not present: Dissociation error = Spin constancy error

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Applications/properties

Spin constancy

Left panels: H_2 dissociation (black: RDMFT, red dotted: MRDCI). Right pannels: E(s) (dotted: minimization, green: ensemble).

Connection to Hartree Fock RDMFT Total and atomization energies Functionals and Minimization Applications/properties

Summary

RDMFT: a promising way to approximate electronic correlations

Connection to Hartree Fock	Prototype systems
RDMFT	Total and atomization energies
Functionals and Minimization	Fundamental gap
Applications/properties	size consistency/fractional spins

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Prototype systems Total and atomization energies Fundamental gap size consistency/fractional spins

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory
- Müller type functionals are the most widely used functionals in RDMFT at the moment

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functionals and Minimization Applications/properties

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory
- Müller type functionals are the most widely used functionals in RDMFT at the moment
- H₂ dissociation is well described

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory
- Müller type functionals are the most widely used functionals in RDMFT at the moment
- H₂ dissociation is well described
- Size consistency and fractional spin behavior issues affect dissociation problem.

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functionals and Minimization Applications/properties

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory
- Müller type functionals are the most widely used functionals in RDMFT at the moment
- H₂ dissociation is well described
- Size consistency and fractional spin behavior issues affect dissociation problem.
- Successful application to total and atomization energies of molecules

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Functionals and Minimization Applications/properties

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory
- Müller type functionals are the most widely used functionals in RDMFT at the moment
- H₂ dissociation is well described
- Size consistency and fractional spin behavior issues affect dissociation problem.
- Successful application to total and atomization energies of molecules
- RDMFT functionals reproduce energy derivative discontinuities: fundamental gap

Connection to Hartree Fock RDMFT Functionals and Minimization Applications/properties Size consistency/fractional spins

- RDMFT: a promising way to approximate electronic correlations
- The goal: not to replace DFT but to give answers for problems the DFT results are not satisfactory
- Müller type functionals are the most widely used functionals in RDMFT at the moment
- H₂ dissociation is well described
- Size consistency and fractional spin behavior issues affect dissociation problem.
- Successful application to total and atomization energies of molecules
- RDMFT functionals reproduce energy derivative discontinuities: fundamental gap
- Gaps for solids (including Mott insulators) are well reproduced