Introduction to many-body Green's functions

Matteo Gatti

European Theoretical Spectroscopy Facility (ETSF)
NanoBio Spectroscopy Group - UPV San Sebastián - Spain matteo.gatti@ehu.es - http://nano-bio.ehu.es - http://www.etsf.eu

ELK school - CECAM 2011

Outline

(1) Motivation

2 One-particle Green's functions: GW approximation
(3) Two-particle Green's functions: Bethe-Salpeter equation

4 Micro-macro connection

References

- Francesco Sottile

PhD thesis, Ecole Polytechnique (2003)
http://etsf.polytechnique.fr/system/files/users/
francesco/Tesi_dot.pdf
Fabien Bruneval
PhD thesis, Ecole Polytechnique (2005)
http://theory.polytechnique.fr/people/bruneval/ bruneval_these.pdf
Riovanni Onida, Lucia Reining, and Angel Rubio Rev. Mod. Phys. 74, 601 (2002).

目 G. Strinati
Rivista del Nuovo Cimento 11, (12)1 (1988).

Outline

(2) One-particle Green's functions: GW approximation

3 Two-particle Green's functions: Bethe-Salpeter equation
(4) Micro-macro connection

Motivation

Silicon
Optical Absorption

Theoretical spectroscopy

- Calculate and reproduce
- Understand and explain
- Predict

Exp. at 30 K from: P. Lautenschlager et al., Phys. Rev. B 36, 4821 (1987).

Theoretical Spectroscopy

- Which kind of spectra?
- Which kind of tools?

Why do we have to study more than DFT?

Absorption spectrum of bulk silicon in DFT

How can we understand this?

Why do we have to study more than DFT?

Absorption spectrum of bulk silicon in DFT

Spectroscopy is exciting!

MBPT vs. TDDFT: different worlds, same physics

MBPT

- based on Green's functions
- one-particle G: electron addition and removal - GW two-particle L : electron-hole excitation - BSE
- moves (quasi)particles around
- is intuitive (easy)

TDDFT

- based on the density
- response function χ : neutral excitations
- moves density around
- is efficient (simple)

Response functions

External perturbation $V_{\text {ext }}$ applied on the sample
$\rightarrow V_{\text {tot }}$ acting on the electronic system

Potentials

$$
\begin{gathered}
\delta V_{\text {tot }}=\delta V_{\text {ext }}+\delta V_{\text {ind }} \\
\delta V_{\text {ind }}=v \delta \rho
\end{gathered}
$$

Dielectric function

$$
\begin{aligned}
\epsilon & =\frac{\delta V_{\text {ext }}}{\delta V_{\text {tot }}}=1-v \frac{\delta \rho}{\delta V_{\text {tot }}} \\
\epsilon^{-1} & =\frac{\delta V_{\text {tot }}}{\delta V_{\text {ext }}}=1+v \frac{\delta \rho}{\delta V_{\text {ext }}}
\end{aligned}
$$

Response functions

External perturbation $V_{\text {ext }}$ applied on the sample
$\rightarrow V_{\text {tot }}$ acting on the electronic system

Dielectric function

$$
\begin{gathered}
\epsilon=\frac{\delta V_{\text {ext }}}{\delta V_{\text {tot }}}=1-v P \\
\epsilon^{-1}=\frac{\delta V_{\text {tot }}}{\delta V_{\text {ext }}}=1+v \chi \\
P=\frac{\delta \rho}{\delta V_{\text {tot }}} \quad \chi=\frac{\delta \rho}{\delta V_{\text {ext }}} \\
\chi=P+P v \chi \\
P=\chi_{0}+\chi_{0} f_{x c} P
\end{gathered}
$$

Micro-macro connection

Microscopic-Macroscopic connection: local fields

$$
\begin{gathered}
\chi_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=P_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)+P_{\mathbf{G}, \mathbf{G}_{1}}(\mathbf{q}, \omega) v_{\mathbf{G}_{1}}(\mathbf{q}) \chi_{\mathbf{G}_{1}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) \\
\epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}+v_{\mathbf{G}}(\mathbf{q}) \chi_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) \\
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)}
\end{gathered}
$$

Adler, Phys. Rev. 126 (1962); Wiser, Phys. Rev. 129 (1963).

Micro-macro connection

Microscopic-Macroscopic connection: local fields

$$
\begin{gathered}
\epsilon_{M}(\mathbf{q}, \omega)=1-v_{\mathbf{G}=0}(\mathbf{q}) \bar{\chi}_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}(\mathbf{q}, \omega) \\
\bar{\chi}_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=P_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)+P_{\mathbf{G}, \mathbf{G}_{1}}(\mathbf{q}, \omega) \bar{v}_{\mathbf{G}_{1}}(\mathbf{q}) \bar{\chi}_{\mathbf{G}_{1}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) \\
\bar{v}_{\mathbf{G}}(\mathbf{q})=0 \\
\bar{v}_{\mathbf{G}}(\mathbf{q})=v_{\mathbf{G}}(\mathbf{q}) \quad \text { for } \mathbf{G}=0 \\
\mathbf{G} \neq 0
\end{gathered}
$$

Hanke, Adv. Phys. 27 (1978).

Absorption spectra

Absorption spectra

$$
\operatorname{Abs}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im} \epsilon_{M}(\mathbf{q}, \omega)
$$

$\operatorname{Abs}(\omega)=-\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im}\left[v_{\mathbf{G}=0}(\mathbf{q}) \bar{\chi} \mathbf{G}_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}(\mathbf{q}, \omega)\right]$
Absorption \rightarrow response to $V_{\text {ext }}+V_{\text {ind }}^{\text {macro }}$

Independent particles: Kohn-Sham

Independent transitions:

$$
\left.\epsilon_{2}(\omega)=\frac{8 \pi^{2}}{\Omega \omega^{2}} \sum_{i j}\left|\left\langle\varphi_{j}\right| \mathbf{e} \cdot \mathbf{v}\right| \varphi_{i}\right\rangle\left.\right|^{2} \delta\left(\varepsilon_{j}-\varepsilon_{i}-\omega\right)
$$

Silicon
Optical Absorption

What is an electron?

Outline

(9) Motivation

2 One-particle Green's functions: GW approximation
(3) Two-particle Green's functions: Bethe-Salpeter equation
4. Micro-macro connection

Photoemission

Direct Photoemission

Inverse Photoemission

Why do we have to study more than DFT?

adapted from M. van Schilfgaarde et al., PRL 96 (2006).

One-particle Green's function

The one-particle Green's function G

Definition and meaning of G :

$$
i G\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{2}, t_{2}\right)=\langle N| T\left[\psi\left(\mathbf{x}_{1}, t_{1}\right) \psi^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right)\right]|N\rangle
$$

$$
\begin{array}{ll}
\text { for } & t_{1}>t_{2} \Rightarrow i G\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{2}, t_{2}\right)=\langle N| \psi\left(\mathbf{x}_{1}, t_{1}\right) \psi^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right)|N\rangle \\
\text { for } & t_{1}<t_{2} \Rightarrow i G\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{2}, t_{2}\right)=-\langle N| \psi^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right) \psi\left(\mathbf{x}_{1}, t_{1}\right)|N\rangle
\end{array}
$$

One-particle Green's function

One-particle Green's function

What is G ?

Definition and meaning of G :

$$
G\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{2}, t_{2}\right)=-i<N\left|T\left[\psi\left(\mathbf{x}_{1}, t_{1}\right) \psi^{\dagger}\left(\mathbf{x}_{2}, t_{2}\right)\right]\right| N>
$$

Insert a complete set of $N+1$ or N-1-particle states. This yields

$$
\begin{aligned}
& G\left(\mathbf{x}_{1}, t_{1} ; \mathbf{x}_{2}, t_{2}\right)=-i \sum_{j} f_{j}\left(\mathbf{x}_{1}\right) f_{j}^{*}\left(\mathbf{x}_{2}\right) e^{-i \varepsilon_{j}\left(t_{1}-t_{2}\right)} \times \\
& \times \quad\left[\theta\left(t_{1}-t_{2}\right) \theta\left(\varepsilon_{j}-\mu\right)-\theta\left(t_{2}-t_{1}\right) \Theta\left(\mu-\varepsilon_{j}\right)\right] \\
& \text { where: }
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{j}=\begin{array}{ll}
E(N+1, j)-E(N), & \varepsilon_{j}>\mu \\
E(N)-E(N-1, j), & \varepsilon_{j}<\mu
\end{array} \\
& f_{j}\left(\mathbf{x}_{1}\right)=\begin{array}{ll}
\langle N| \psi\left(\mathbf{x}_{1}\right)|N+1, j\rangle, & \varepsilon_{j}>\mu \\
\langle N-1, j| \psi\left(\mathbf{x}_{1}\right)|N\rangle, & \varepsilon_{j}<\mu
\end{array}
\end{aligned}
$$

One-particle Green's function

What is G? - Fourier transform

Fourier Transform:

$$
G\left(\mathbf{x}, \mathbf{x}^{\prime}, \omega\right)=\sum_{j} \frac{f_{j}(\mathbf{x}) f_{j}^{*}\left(\mathbf{x}^{\prime}\right)}{\omega-\varepsilon_{j}+i \eta \operatorname{sgn}\left(\varepsilon_{j}-\mu\right)} .
$$

Spectral function:

$$
A\left(\mathbf{x}, \mathbf{x}^{\prime} ; \omega\right)=\frac{1}{\pi}\left|\operatorname{Im} G\left(\mathbf{x}, \mathbf{x}^{\prime} ; \omega\right)\right|=\sum_{j} f_{j}(\mathbf{x}) f_{j}^{*}\left(\mathbf{x}^{\prime}\right) \delta\left(\omega-\varepsilon_{j}\right) .
$$

Photoemission

Direct Photoemission

Inverse Photoemission

One-particle excitations \rightarrow poles of one-particle Green's function G

One-particle Green's function

One-particle Green's function

From one-particle G we can obtain:

- one-particle excitation spectra
- ground-state expectation value of any one-particle operator: e.g. density ρ or density matrix γ :

$$
\rho(\mathbf{r}, t)=-i G\left(\mathbf{r}, \mathbf{r}, t, t^{+}\right) \quad \gamma\left(\mathbf{r}, \mathbf{r}^{\prime}, t\right)=-i G\left(\mathbf{r}, \mathbf{r}^{\prime}, t, t^{+}\right)
$$

- ground-state total energy

One-particle Green's function

Straightforward?

$$
G\left(\mathbf{x}, t ; \mathbf{x}^{\prime}, t^{\prime}\right)=-i<N\left|T\left[\psi(\mathbf{x}, t) \psi^{\dagger}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right]\right| N>
$$

$$
\mid N>=\text { ??? Interacting ground state! }
$$

Perturbation Theory?

Time-independent perturbation theories: messy. theorem, Wick's theorem, expansion (diagrams). Lots of diagrams.

One-particle Green's function

Straightforward?

$$
G\left(\mathbf{x}, t ; \mathbf{x}^{\prime}, t^{\prime}\right)=-i<N\left|T\left[\psi(\mathbf{x}, t) \psi^{\dagger}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right]\right| N>
$$

$$
\mid N>=? ? ? \quad \text { Interacting ground state! }
$$

\square

One-particle Green's function

Straightforward?

$$
G\left(\mathbf{x}, t ; \mathbf{x}^{\prime}, t^{\prime}\right)=-i<N\left|T\left[\psi(\mathbf{x}, t) \psi^{\dagger}\left(\mathbf{x}^{\prime}, t^{\prime}\right)\right]\right| N>
$$

$$
\mid N>=? ? ? \quad \text { Interacting ground state! }
$$

Perturbation Theory?

Time-independent perturbation theories: messy.
Textbooks: adiabatically switched on interaction, Gell-Mann-Low theorem, Wick's theorem, expansion (diagrams). Lots of diagrams.....

Functional approach to the MB problem

Equation of motion

To determine the 1-particle Green's function:

$$
\left[i \frac{\partial}{\partial t_{1}}-h_{0}(1)\right] G(1,2)=\delta(1,2)-i \int d 3 v(1,3) G_{2}\left(1,3,2,3^{+}\right)
$$

Do the Fourier transform in frequency space:

$$
\left[\omega-h_{0}\right] G(\omega)+i \int v G_{2}(\omega)=1
$$

where $h_{0}=-\frac{1}{2} \nabla^{2}+v_{\text {ext }}$ is the independent particle Hamiltonian. The 2-particle Green's function describes the motion of 2 particles.

$$
\begin{array}{ccc}
\text { Unfortunately, hierarchy of equations } \\
G_{1}(1,2) & \leftarrow & G_{2}(1,2 ; 3,4) \\
G_{2}(1,2 ; 3,4) & \leftarrow & G_{3}(1,2,3 ; 4,5,6)
\end{array}
$$

Self-energy

Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small...
Let's say we know $G_{0}(\omega)$ that corresponds to the Hamiltonian h_{0} Everything that is unknown is put in

$$
\Sigma(\omega)=G_{0}^{-1}(\omega)-G^{-1}(\omega)
$$

This is the definition of the self-energy
to be compared with

Self-energy

Perturbation theory starts from what is known to evaluate what is not known, hoping that the difference is small...
Let's say we know $G_{0}(\omega)$ that corresponds to the Hamiltonian h_{0} Everything that is unknown is put in

$$
\Sigma(\omega)=G_{0}^{-1}(\omega)-G^{-1}(\omega)
$$

This is the definition of the self-energy
Thus,

$$
\left[\omega-h_{0}\right] G(\omega)-\int \Sigma(\omega) G(\omega)=1
$$

to be compared with

$$
\left[\omega-h_{0}\right] G(\omega)+i \int v G_{2}(\omega)=1
$$

One-particle Green's function

Trick due to Schwinger (1951):
introduce a small external potential $U(3)$, that will be made equal to zero at the end, and calculate the variations of G with respect to U

$$
\frac{\delta G(1,2)}{\delta U(3)}=-G_{2}(1,3 ; 2,3)+G(1,2) G(3,3) .
$$

Hedin's equation

$$
\begin{aligned}
& \text { Hedin's equations } \\
& \qquad \begin{aligned}
\Sigma & =i G W \Gamma \\
G & =G_{0}+G_{0} \Sigma G \\
\Gamma & =1+\frac{\delta \Sigma}{\delta G} G G \Gamma \\
P & =-i G G \Gamma \\
W & =v+v P W
\end{aligned}
\end{aligned}
$$

L. Hedin, Phys. Rev. 139 (1965)

GW bandstructure: photoemission

additional charge \rightarrow

GW bandstructure: photoemission

additional charge \rightarrow reaction: polarization, screening

GW approximation

(1) polarization made of noninteracting electron-hole pairs (RPA)
(2) classical (Hartree) interaction between additional charge and polarization charge

Hedin's equation and GW

$$
\begin{aligned}
& \text { GW approximation } \\
& \begin{aligned}
\Sigma & =i G W \Gamma \\
G & =G_{0}+G_{0} \Sigma G \\
\Gamma & =1 \\
P & =-i G G \Gamma \\
W & =v+v P W
\end{aligned}
\end{aligned}
$$

L. Hedin, Phys. Rev. 139 (1965)

Hedin's equation and GW

$$
\begin{aligned}
& \text { GW approximation } \\
& \Sigma=i G W \\
& G=G_{0}+G_{0} \Sigma G \\
& \Gamma=1 \\
& P=-i G G \\
& W=v+v P W
\end{aligned}
$$

L. Hedin, Phys. Rev. 139 (1965)

GW corrections

Standard perturbative $\mathrm{G}_{0} \mathrm{~W}_{0}$

$$
\begin{aligned}
H_{0}(\mathbf{r}) \varphi_{i}(\mathbf{r})+V_{x c}(\mathbf{r}) \varphi_{i}(r) & =\epsilon_{i} \varphi_{i}(\mathbf{r}) \\
H_{0}(\mathbf{r}) \phi_{i}(\mathbf{r})+\int d \mathbf{r}^{\prime} \Sigma\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega=E_{i}\right) \phi_{i}\left(\mathbf{r}^{\prime}\right) & =E_{i} \phi_{i}(\mathbf{r})
\end{aligned}
$$

First-order perturbative corrections with $\Sigma=i G W$:

$$
E_{i}-\epsilon_{i}=\left\langle\varphi_{i}\right| \Sigma-V_{x c}\left|\varphi_{i}\right\rangle
$$

Hybersten and Louie, PRB 34 (1986); Godby, Schlüter and Sham, PRB 37 (1988)

GW results

M. van Schilfgaarde et al., PRL 96 (2006).

Independent (quasi)particles: GW

Independent transitions:

$$
\left.\epsilon_{2}(\omega)=\frac{8 \pi^{2}}{\Omega \omega^{2}} \sum_{i j}\left|\left\langle\varphi_{j}\right| \mathbf{e} \cdot \mathbf{v}\right| \varphi_{i}\right\rangle\left.\right|^{2} \delta\left(E_{j}-E_{i}-\omega\right)
$$

What is wrong?

What is missing?

Absorption

Two-particle excitations \rightarrow poles of two-particle Green's function L Excitonic effects = electron - hole interaction

Absorption

Two-particle excitations \rightarrow poles of two-particle Green's function L Excitonic effects = electron - hole interaction

Absorption

Two-particle excitations \rightarrow poles of two-particle Green's function L Excitonic effects = electron - hole interaction

Outline

(9) Motivation

(2) One-particle Green's functions: GW approximation
(3) Two-particle Green's functions: Bethe-Salpeter equation
4. Micro-macro connection

Beyond RPA

$$
P(12)=-i G(12) G(21)=P_{0}(12)
$$

Independent particles (RPA)

Beyond RPA

$$
P(12)=-i G(13) G(42) \Gamma(342)
$$

Interacting particles (excitonic effects)

From Hedin's equations to BSE

From Hedin...

$$
\begin{gathered}
P=-i G G \Gamma \\
\Gamma=1+\frac{\delta \Sigma}{\delta G} G G \Gamma
\end{gathered}
$$

From Hedin's equations to BSE

From Hedin...

$$
\begin{gathered}
P=-i G G \Gamma \\
\Gamma=1+\frac{\delta \Sigma}{\delta G} G G \Gamma
\end{gathered}
$$

...to Bethe-Salpeter

$$
L=L_{0}+L_{0}\left(v+i \frac{\delta \Sigma}{\delta G}\right) L
$$

The Bethe-Salpeter equation

Exercise

Formal derivation

$$
\begin{aligned}
L(1234) & =-i \frac{\delta G(12)}{\delta V_{\text {ext }}(34)}=+i G(15) \frac{\delta G^{-1}(56)}{\delta V_{\text {ext }}(34)} G(62) \\
& =+i G(15) \frac{\delta\left[G_{0}^{-1}(56)-V_{\text {ext }}(56)-\Sigma(56)\right]}{\delta V_{\text {ext }}(34)} G(62) \\
& =-i G(13) G(42)+i G(15) G(62)\left[\frac{\delta V_{H}(5) \delta(56)}{\delta V_{\text {ext }}(34)}-\frac{\delta \Sigma(56)}{\delta V_{\text {ext }}(34)}\right] \\
& =-i G(13) G(42)+i G(15) G(62)\left[\frac{\delta V_{H}(5) \delta(56)}{\delta G(78)}-\frac{\delta \Sigma(56)}{\delta G(78)}\right] \frac{\delta G(78)}{\delta V_{\text {ext }}(34)} \\
L(1234) & =L_{0}(1234)+L_{0}(1256)\left[v(57) \delta(56) \delta(78)+i \frac{\delta \Sigma(56)}{\delta G(78)}\right] L(7834)
\end{aligned}
$$

The Bethe-Salpeter equation

$$
L(1234)=L_{0}(1234)+L_{0}(1256)\left[v(57) \delta(56) \delta(78)+i \frac{\delta \Sigma(56)}{\delta G(78)}\right] L(7834)
$$

Polarizabilities

$$
L(1234)=-i \frac{\delta G(12)}{\delta V_{\text {ext }}(34)} \quad \chi(12)=\frac{\delta \rho(1)}{\delta V_{\text {ext }}(2)}
$$

$$
L(1122)=\chi(12)
$$

The Bethe-Salpeter equation

Approximations

$$
L=L_{0}+L_{0}\left(v+i \frac{\delta \Sigma}{\delta G}\right) L
$$

The Bethe-Salpeter equation

Approximations

$$
L=L_{0}+L_{0}\left(v+i \frac{\delta \Sigma}{\delta G}\right) L
$$

Approximation:

$$
\Sigma \approx i G W
$$

The Bethe-Salpeter equation

Approximations

$$
L=L_{0}+L_{0}\left(v-\frac{\delta(G W)}{\delta G}\right) L
$$

Approximation:

$$
\Sigma \approx i G W \quad \frac{\delta(G W)}{\delta G}=W+G \frac{\delta W}{\delta G} \approx W
$$

The Bethe-Salpeter equation

Approximations

Final result:

$$
L=L_{0}+L_{0}(v-W) L
$$

The Bethe-Salpeter equation

Bethe-Salpeter equation

$$
\begin{aligned}
L(1234)= & L_{0}(1234)+ \\
& L_{0}(1256)[v(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] L(7834)
\end{aligned}
$$

Absorption spectra in BSE

Bulk silicon

G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).

Solving BSE

$$
\begin{aligned}
& L(1234)=L_{0}(1234)+ \\
& \quad L_{0}(1256)[v(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] L(7834)
\end{aligned}
$$

Solving BSE

$$
\begin{aligned}
& \bar{L}(1234)=L_{0}(1234)+ \\
& \quad L_{0}(1256)[\bar{v}(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] \bar{L}(7834)
\end{aligned}
$$

Solving BSE

$$
\begin{aligned}
& \bar{L}(1234)=L_{0}(1234)+ \\
& \quad L_{0}(1256)[\bar{v}(57) \delta(56) \delta(78)-W(56) \delta(57) \delta(68)] \bar{L}(7834)
\end{aligned}
$$

Static W

Simplification:

$$
\begin{gathered}
W\left(\mathbf{r}_{1}, \mathbf{r}_{2}, t_{1}-t_{2}\right) \Rightarrow W\left(\mathbf{r}_{1}, \mathbf{r}_{2}\right) \delta\left(t_{1}-t_{2}\right) \\
\bar{L}(1234) \Rightarrow \bar{L}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, t-t^{\prime}\right) \Rightarrow \bar{L}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, \omega\right)
\end{gathered}
$$

Solving BSE

Dielectric function

$$
\begin{aligned}
& \bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)=L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)+\int d \mathbf{r}_{5} d \mathbf{r}_{6} d \mathbf{r}_{7} d \mathbf{r}_{8} L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{5} \mathbf{r}_{6} \omega\right) \times \\
& \times\left[\bar{v}\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{7} \mathbf{r}_{8}\right)-W\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{6} \mathbf{r}_{8}\right)\right] \bar{L}\left(\mathbf{r}_{7} \mathbf{r}_{8} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right) \\
& \epsilon_{M}(\omega)=1-\lim _{\mathbf{q} \rightarrow 0}\left[v_{\mathbf{G}=0}(\mathbf{q}) \int d \mathbf{r} d \mathbf{r}^{\prime} e^{-i \mathbf{q}\left(\mathbf{r}-\mathbf{r}^{\prime}\right)} \bar{L}\left(\mathbf{r}, \mathbf{r}, \mathbf{r}^{\prime}, \mathbf{r}^{\prime}, \omega\right)\right]
\end{aligned}
$$

Solving BSE

$$
\begin{aligned}
& \bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)=L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)+\int d \mathbf{r}_{5} d \mathbf{r}_{6} d \mathbf{r}_{7} d \mathbf{r}_{8} L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{5} \mathbf{r}_{6} \omega\right) \times \\
& \quad \times\left[\bar{V}\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{7} \mathbf{r}_{8}\right)-W\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{6} \mathbf{r}_{8}\right)\right] \bar{L}\left(\mathbf{r}_{7} \mathbf{r}_{8} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)
\end{aligned}
$$

How to solve it?

Solving BSE

$$
\begin{aligned}
& \bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)=L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)+\int d \mathbf{r}_{5} d \mathbf{r}_{6} d \mathbf{r}_{7} d \mathbf{r}_{8} L_{0}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{5} \mathbf{r}_{6} \omega\right) \times \\
& \quad \times\left[\bar{V}\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{7} \mathbf{r}_{8}\right)-W\left(\mathbf{r}_{5} \mathbf{r}_{6}\right) \delta\left(\mathbf{r}_{5} \mathbf{r}_{7}\right) \delta\left(\mathbf{r}_{6} \mathbf{r}_{8}\right)\right] \bar{L}\left(\mathbf{r}_{7} \mathbf{r}_{8} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)
\end{aligned}
$$

How to solve it?

Transition space

$$
\bar{L}_{\left(n_{1} n_{2}\right)\left(n_{3} n_{4}\right)}(\omega)=\left\langle\phi_{n_{1}}^{*}\left(\mathbf{r}_{1}\right) \phi_{n_{2}}\left(\mathbf{r}_{2}\right)\right| \bar{L}\left(\mathbf{r}_{1} \mathbf{r}_{2} \mathbf{r}_{3} \mathbf{r}_{4} \omega\right)\left|\phi_{n_{3}}^{*}\left(\mathbf{r}_{3}\right) \phi_{n_{4}}\left(\mathbf{r}_{4}\right)\right\rangle=\langle\langle\bar{L}\rangle\rangle
$$

Exercise

$$
L_{0}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \mathbf{r}_{3}, \mathbf{r}_{4}, \omega\right)=\sum_{i j}\left(f_{j}-f_{i}\right) \frac{\phi_{i}^{*}\left(\mathbf{r}_{1}\right) \phi_{j}\left(\mathbf{r}_{2}\right) \phi_{i}\left(\mathbf{r}_{3}\right) \phi_{j}^{*}\left(\mathbf{r}_{4}\right)}{\omega-\left(E_{i}-E_{j}\right)}
$$

Calculate:

$$
\left\langle\left\langle L_{0}\right\rangle\right\rangle=\frac{f_{n_{1}}-f_{n_{2}}}{\omega-\left(E_{n_{2}}-E_{n_{1}}\right)} \delta_{n_{1} n_{3}} \delta_{n_{2} n_{4}}
$$

Solving BSE

BSE in transition space

We consider only resonant optical transitions for a nonmetallic system: $\left(n_{1} n_{2}\right)=(v \mathbf{k} \mathbf{c k}) \Rightarrow(v c)$

$$
\begin{gathered}
\bar{L}=L_{0}+L_{0}(\bar{v}-W) \bar{L} \\
\bar{L}=\left[1-L_{0}(\bar{v}-W)\right]^{-1} L_{0} \\
\bar{L}=\left[L_{0}^{-1}-(\bar{v}-W)\right]^{-1}
\end{gathered}
$$

$$
\bar{L}_{(v c)\left(v^{\prime} c^{\prime}\right)}(\omega)=\left[\left(E_{c}-E_{v}-\omega\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}}+\left(f_{v}-f_{c}\right)\langle\langle\bar{v}-W\rangle\rangle\right]^{-1}\left(f_{c^{\prime}}-f_{v^{\prime}}\right)
$$

Solving BSE

$$
\bar{L}_{(v c)\left(v^{\prime} c^{\prime}\right)}(\omega)=\left[\left(E_{c}-E_{v}-\omega\right) \delta_{w v^{\prime}} \delta_{c c^{\prime}}+\left(f_{v}-f_{c}\right)\langle\langle\bar{v}-W\rangle\rangle\right]^{-1}\left(f_{c^{\prime}}-f_{v^{\prime}}\right)
$$

-

Solving BSE

$$
\begin{gathered}
\bar{L}_{(v c)\left(v^{\prime} c^{\prime}\right)}(\omega)=\left[\left(E_{c}-E_{v}-\omega\right) \delta_{v^{\prime}} \delta_{c c^{\prime}}+\left(f_{v}-f_{c}\right)\langle\langle\bar{v}-W\rangle\rangle\right]^{-1}\left(f_{c^{\prime}}-f_{v^{\prime}}\right) \\
\bar{L} \rightarrow\left[H_{e x c}-\omega /\right]^{-1}
\end{gathered}
$$

Spectral representation of a hermitian operator

$$
\begin{gathered}
{\left[H_{e x c}-\omega /\right]^{-1}=\sum_{\lambda} \frac{\left|A_{\lambda}\right\rangle\left\langle A_{\lambda}\right|}{E_{\lambda}-\omega}} \\
H_{e x c} A_{\lambda}=E_{\lambda} A_{\lambda} \\
\bar{L}_{(v c)\left(v^{\prime} c^{\prime}\right)}(\omega)=\sum_{\lambda} \frac{A_{\lambda}^{(v c)} A_{\lambda}^{*\left(v^{\prime} c^{\prime}\right)}}{E_{\lambda}-\omega}\left(f_{c^{\prime}}-f_{v^{\prime}}\right)
\end{gathered}
$$

Absorption spectra in BSE

Independent (quasi)particles

$$
\left.A b s(\omega) \propto \sum_{v c}|\langle v| D| c\right\rangle\left.\right|^{2} \delta\left(E_{c}-E_{v}-\omega\right)
$$

Excitonic effects

$$
\begin{gathered}
{\left[H_{e l}+H_{\text {hole }}+H_{e l-\text { hole }}\right] A_{\lambda}=E_{\lambda} A_{\lambda}} \\
\left.\operatorname{Abs}(\omega) \propto \sum_{\lambda}\left|\sum_{v c} A_{\lambda}^{(v c)}\langle v| D\right| c\right\rangle\left.\right|^{2} \delta\left(E_{\lambda}-\omega\right)
\end{gathered}
$$

- mixing of transitions: $\left.|\langle v| D| c\rangle\left.\right|^{2} \rightarrow\left|\sum_{v c} A_{\lambda}^{(v c)}\langle v| D\right| c\right\rangle\left.\right|^{2}$
- modification of excitation energies: $E_{c}-E_{v} \rightarrow E_{\lambda}$

BSE calculations

A three-step method

(1) LDA calculation
\Rightarrow Kohn-Sham wavefunctions φ_{i}
(2) GW calculation
\Rightarrow GW energies E_{i} and screened Coulomb interaction W
(3) BSE calculation
solution of $H_{\text {exc }} A_{\lambda}=E_{\lambda} A_{\lambda}$ with:
$H_{e x c}^{(v c)\left(v^{\prime} c^{\prime}\right)}=\left(E_{c}-E_{v}\right) \delta_{v v^{\prime}} \delta_{c c^{\prime}}+\left(f_{v}-f_{c}\right)\langle v c| \bar{v}-W\left|v^{\prime} c^{\prime}\right\rangle$
\Rightarrow excitonic eigenstates A_{λ}, E_{λ}
\Rightarrow spectra $\epsilon_{M}(\omega)$

A bit of history

－derivation of the equation（bound state of deuteron）
围 E．E．Salpeter and H．A．Bethe，PR 84， 1232 （1951）．
－BSE for exciton calculations
R．J．Sham and T．M．Rice，PR 144， 708 （1966）．
－W．Hanke and L．J．Sham，PRL 43， 387 （1979）．
－first ab initio calculation
G．Onida，L．Reining，R．W．Godby，R．Del Sole，and W．Andreoni， PRL 75， 818 （1995）．
－first ab initio calculations in extended systems
S．Albrecht，L．Reining，R．Del Sole，and G．Onida，PRL 80， 4510 （1998）．
围 L．X．Benedict，E．L．Shirley，and R．B．Bohn，PRL 80， 4514 （1998）．
围 M．Rohlfing and S．G．Louie，PRL 81， 2312 （1998）．

Continuum excitons

Bulk silicon

G. Onida, L. Reining, and A. Rubio, RMP 74 (2002).

Bound excitons

Solid argon

F. Sottile, M. Marsili, V. Olevano, and L. Reining, PRB 76 (2007).

The Wannier model

Bethe-Salpeter equation

$$
\begin{gathered}
H_{e x c} A_{\lambda}=E_{\lambda} A_{\lambda} \\
H_{e x c}^{(v c)\left(v^{\prime} c^{\prime}\right)}=\left(E_{c}-E_{v}\right) \delta_{w v^{\prime}} \delta_{c c^{\prime}}+\langle\langle\bar{v}-W\rangle\rangle
\end{gathered}
$$

Wannier model

- two parabolic bands

$$
E_{c}-E_{v}=E_{g}+\frac{k^{2}}{2 \mu} \quad \rightarrow \quad-\frac{\nabla^{2}}{2 \mu}
$$

- no local fields $(\bar{v}=0)$ and effective screened W

$$
W\left(\mathbf{r}, \mathbf{r}^{\prime}\right)=\frac{1}{\epsilon_{0}\left|\mathbf{r}-\mathbf{r}^{\prime}\right|}
$$

- solution = Rydberg series for effective H atom

$$
E_{n}=E_{g}-\frac{R_{\text {eff }}}{n^{2}} \quad \text { with } \quad R_{e f f}=\frac{R_{\infty} \mu}{\epsilon_{0}^{2}}
$$

Exciton analysis

$$
\text { Exciton amplitude: } \Psi_{\lambda}\left(\mathbf{r}_{h}, \mathbf{r}_{e}\right)=\sum_{v c} A_{\lambda}^{(v c)} \phi_{v}^{*}\left(\mathbf{r}_{h}\right) \phi_{c}\left(\mathbf{r}_{e}\right)
$$

Graphene nanoribbon

Manganese Oxide
D. Prezzi, et al., PRB 77 (2008).
C. Rödl, et al., PRB 77 (2008).

Outline

(9) Motivation

(2) One-particle Green's functions: GW approximation

3 Two-particle Green's functions: Bethe-Salpeter equation
4 Micro-macro connection

Micro-macro connection

Observation

At long wavelength, external fields are slowly varying over the unit cell:

- dimension of the unit cell for silicon: 0.5 nm
- visible radiation $400 \mathrm{~nm}<\lambda<800 \mathrm{~nm}$

Total and induced fields are rapidly varying: they include the contribution from electrons in all regions of the cell. Large and irregular fluctuations over the atomic scale.

Micro-macro connection

Observation

One usually measures quantities that vary on a macroscopic scale. When we calculate microscopic quantities we need to average over distances that are

- large compared to the cell parameter
- small compared to the wavelength of the external perturbation.

The differences between the microscopic fields and the averaged (macroscopic) fields are called the crystal local fields.

Suppose that we are able

to calculate the microscopic dielectric function ϵ,
how do we obtain the macroscopic dielectric function ϵ_{M} that we measure in experiments?

Micro-macro connection

Fourier transform

In a periodic medium, every function $V(\mathbf{r}, \omega)$ can be represented by the Fourier series

$$
V(\mathbf{r}, \omega)=\sum_{\mathbf{q} \mathbf{G}} V(\mathbf{q}+\mathbf{G}, \omega) e^{i(\mathbf{q}+\mathbf{G}) \mathbf{r}}
$$

or:

$$
V(\mathbf{r}, \omega)=\sum_{\mathbf{q}} e^{i \mathbf{q r}} \sum_{\mathbf{G}} V(\mathbf{q}+\mathbf{G}, \omega) e^{i \mathbf{G r}}=\sum_{\mathbf{q}} e^{i \mathbf{q r}} V(\mathbf{q}, \mathbf{r}, \omega)
$$

where:

$$
V(\mathbf{q}, \mathbf{r}, \omega)=\sum_{\mathbf{G}} V(\mathbf{q}+\mathbf{G}, \omega) e^{i \mathbf{G r}}
$$

$V(\mathbf{q}, \mathbf{r}, \omega)$ is periodic with respect to the Bravais lattice and hence is the quantity that one has to average to get the corresponding macroscopic potential $V_{M}(\mathbf{q}, \omega)$.

Micro-macro connection

Averages

$$
V_{M}(\mathbf{q}, \omega)=\frac{1}{\Omega_{c}} \int d \mathbf{r} V(\mathbf{q}, \mathbf{r}, \omega)
$$

Therefore:

The macroscopic average V_{M} corresponds to

Micro-macro connection

Averages

$$
\begin{aligned}
V_{M}(\mathbf{q}, \omega) & =\frac{1}{\Omega_{c}} \int d \mathbf{r} V(\mathbf{q}, \mathbf{r}, \omega) \\
V(\mathbf{q}, \mathbf{r}, \omega) & =\sum_{\mathbf{G}} V(\mathbf{q}+\mathbf{G}, \omega) e^{i \mathbf{G r}}
\end{aligned}
$$

Therefore:

$$
V_{M}(\mathbf{q}, \omega)=\sum_{\mathbf{G}} V(\mathbf{q}+\mathbf{G}, \omega) \frac{1}{\Omega_{c}} \int d \mathbf{r} e^{i \mathbf{G r}}=V(\mathbf{q}+\mathbf{0}, \omega)
$$

The macroscopic average V_{M} corresponds to the $\mathbf{G}=0$ component of the microscopic V.

Example

$$
V_{\text {ext }}(\mathbf{q}, \omega)=\epsilon_{M}(\mathbf{q}, \omega) V_{t o t, M}(\mathbf{q}, \omega)
$$

Micro-macro connection

Fourier transforms

Fourier transform of a function $f\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)$:
$f\left(\mathbf{q}+\mathbf{G}, \mathbf{q}+\mathbf{G}^{\prime}, \omega\right)=\int d \mathbf{r} d \mathbf{r}^{\prime} e^{-i(\mathbf{q}+\mathbf{G}) \mathbf{r}} f\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) e^{+i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \mathbf{r}^{\prime}} \equiv f_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)$
Therefore the relation
in the Fourier space becomes:

Micro-macro connection

Fourier transforms

Fourier transform of a function $f\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right)$:

$$
f\left(\mathbf{q}+\mathbf{G}, \mathbf{q}+\mathbf{G}^{\prime}, \omega\right)=\int d \mathbf{r} d \mathbf{r}^{\prime} e^{-i(\mathbf{q}+\mathbf{G}) \mathbf{r}} f\left(\mathbf{r}, \mathbf{r}^{\prime}, \omega\right) e^{+i\left(\mathbf{q}+\mathbf{G}^{\prime}\right) \mathbf{r}^{\prime}} \equiv f_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)
$$

Therefore the relation

$$
V_{t o t}\left(\mathbf{r}_{1}, \omega\right)=\int d \mathbf{r}_{2} \epsilon^{-1}\left(\mathbf{r}_{1}, \mathbf{r}_{2}, \omega\right) V_{\text {ext }}\left(\mathbf{r}_{2}, \omega\right)
$$

in the Fourier space becomes:

$$
V_{t o t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}^{-}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

Micro-macro connection

Example

$$
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{M}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}(\mathbf{q}, \omega)
$$

Macroscopic dielectric function

$$
V_{t o t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega) V_{e x t}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

Micro-macro connection

Example

$$
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{M}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}(\mathbf{q}, \omega)
$$

Macroscopic dielectric function

$$
\begin{gathered}
V_{t o t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right) \\
V_{M, t o t}(\mathbf{q}, \omega)=V_{\text {tot }}(\mathbf{q}+\mathbf{0}, \omega)
\end{gathered}
$$

Micro-macro connection

Example

$$
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{M}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}(\mathbf{q}, \omega)
$$

Macroscopic dielectric function

$$
\begin{gathered}
V_{t o t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}_{,}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right) \\
V_{M, \text { tot }}(\mathbf{q}, \omega)=V_{\text {tot }}(\mathbf{q}+\mathbf{0}, \omega)
\end{gathered}
$$

$V_{\text {ext }}$ is a macroscopic quantity:

$$
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega) V_{e x t}(\mathbf{q}, \omega)
$$

Micro-macro connection

Example

$$
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{M}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}(\mathbf{q}, \omega)
$$

Macroscopic dielectric function

$$
\begin{gathered}
V_{t o t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}_{,}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right) \\
V_{M, \text { tot }}(\mathbf{q}, \omega)=V_{\text {tot }}(\mathbf{q}+\mathbf{0}, \omega)
\end{gathered}
$$

$V_{\text {ext }}$ is a macroscopic quantity:

$$
\begin{gathered}
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega) V_{e x t}(\mathbf{q}, \omega) \\
\epsilon_{M}^{-1}(\mathbf{q}, \omega)=\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)
\end{gathered}
$$

Micro-macro connection

Example

$$
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{M}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}(\mathbf{q}, \omega)
$$

Macroscopic dielectric function

$$
\begin{gathered}
V_{t o t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}_{,}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega) V_{\text {ext }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right) \\
V_{M, \text { tot }}(\mathbf{q}, \omega)=V_{\text {tot }}(\mathbf{q}+\mathbf{0}, \omega)
\end{gathered}
$$

$V_{\text {ext }}$ is a macroscopic quantity:

$$
\begin{gathered}
V_{t o t, M}(\mathbf{q}, \omega)=\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega) V_{e x t}(\mathbf{q}, \omega) \\
\epsilon_{M}^{-1}(\mathbf{q}, \omega)=\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega) \\
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)}
\end{gathered}
$$

Micro-macro connection

Macroscopic dielectric function

$$
V_{e x t}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) V_{t o t}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

Micro-macro connection

Macroscopic dielectric function

$$
V_{\text {ext }}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) V_{t o t}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

Remember: $V_{\text {ext }}$ is a macroscopic quantity:

$$
V_{\text {ext }}(\mathbf{q}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) V_{\text {tot }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

Micro-macro connection

Macroscopic dielectric function

$$
V_{\text {ext }}(\mathbf{q}+\mathbf{G}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) V_{\text {tot }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

Remember: $V_{\text {ext }}$ is a macroscopic quantity:

$$
V_{\text {ext }}(\mathbf{q}, \omega)=\sum_{\mathbf{G}^{\prime}} \epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) V_{\text {tot }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

$$
V_{\text {ext }}(\mathbf{q}, \omega)=\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}(\mathbf{q}, \omega) V_{\text {tot }, M}(\mathbf{q}, \omega)+\sum_{\mathbf{G}^{\prime} \neq 0} \epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) V_{\text {tot }}\left(\mathbf{q}+\mathbf{G}^{\prime}, \omega\right)
$$

$$
\begin{gathered}
V_{\text {ext }}(\mathbf{q}, \omega)=\epsilon_{M}(\mathbf{q}, \omega) V_{\text {tot }, M}(\mathbf{q}, \omega) \\
\epsilon_{M}(\mathbf{q}, \omega) \neq \epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}(\mathbf{q}, \omega)
\end{gathered}
$$

Micro-macro connection

Spectra

$$
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)}
$$

Micro-macro connection

Spectra

$$
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)}
$$

$$
\operatorname{Abs}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im} \epsilon_{M}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im} \frac{1}{\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)}
$$

$\operatorname{EELS}(\omega)=-\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im} \epsilon_{M}^{-1}(\omega)=-\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im} \epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)$

BSE vs. TDDFT: what in common?

BSE

$$
L=L_{0}+L_{0}(v+\equiv) L
$$

TDDFT

$$
\chi=\chi_{0}+\chi_{0}\left(v+f_{x c}\right) \chi
$$

The Coulomb term v

The Coulomb term

$$
v=v_{0}+\bar{v}
$$

Local fields reloaded

Microscopic-Macroscopic connection: local fields

$$
\begin{gathered}
\chi \mathbf{G}, \mathbf{G}^{\prime}(\mathbf{q}, \omega)= \\
P_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)+\sum_{\mathbf{G}_{1}} P_{\mathbf{G}, \mathbf{G}_{1}}(\mathbf{q}, \omega) v_{\mathbf{G}_{1}}(\mathbf{q}) \chi_{\mathbf{G}_{1}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) \\
\epsilon_{\mathbf{G}, \mathbf{G}^{\prime}}^{-1}(\mathbf{q}, \omega)=\delta_{\mathbf{G}, \mathbf{G}^{\prime}}+v_{\mathbf{G}}(\mathbf{q}) \chi_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) \\
\epsilon_{M}(\mathbf{q}, \omega)=\frac{1}{\epsilon_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{-1}(\mathbf{q}, \omega)}
\end{gathered}
$$

Adler, Phys. Rev. 126 (1962); Wiser, Phys. Rev. 129 (1963).

Local fields reloaded

Microscopic-Macroscopic connection: local fields

$$
\begin{gathered}
\epsilon_{M}(\mathbf{q}, \omega)=1-v_{\mathbf{G}=0}(\mathbf{q}) \bar{\chi}_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}(\mathbf{q}, \omega) \\
\bar{\chi}_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)=P_{\mathbf{G}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega)+\sum_{\mathbf{G}_{1}} P_{\mathbf{G}, \mathbf{G}_{1}}(\mathbf{q}, \omega) \bar{v}_{\mathbf{G}_{1}}(\mathbf{q}) \bar{\chi}_{\mathbf{G}_{1}, \mathbf{G}^{\prime}}(\mathbf{q}, \omega) \\
\bar{v}_{\mathbf{G}}(\mathbf{q})=0 \\
\bar{v}_{\mathbf{G}}(\mathbf{q})=v_{\mathbf{G}}(\mathbf{q}) \quad \text { for } \mathbf{G}=0 \\
\mathbf{G} \neq 0
\end{gathered}
$$

Hanke, Adv. Phys. 27 (1978).

Absorption

$$
\begin{gathered}
\operatorname{Abs}(\omega)=\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im} \epsilon_{M}(\mathbf{q}, \omega) \\
\operatorname{Abs}(\omega)=-\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im}\left[v_{\mathbf{G}=0}(\mathbf{q}) \bar{\chi} \mathbf{G}=0, \mathbf{G}^{\prime}=0\right. \\
\bar{\chi}=P+P)] \\
\bar{\chi} \bar{v} \bar{\chi}
\end{gathered}
$$

$$
\text { Absorption } \rightarrow \text { response to } V_{\text {ext }}+V_{i n d}^{\text {macro }}
$$

EELS

$\operatorname{Eels}(\omega)=-\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im}\left[1 / \epsilon_{M}(\mathbf{q}, \omega)\right]$
$\operatorname{Eels}(\omega)=-\lim _{\mathbf{q} \rightarrow 0} \operatorname{Im}\left[v_{\mathbf{G}=0}(\mathbf{q}) \chi_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}(\mathbf{q}, \omega)\right]$

$$
\chi=P+P\left(v_{0}+\bar{v}\right) \chi
$$

Eels \rightarrow response to $V_{\text {ext }}$

The Coulomb term v

The Coulomb term

$$
v=v_{0}+\bar{v}
$$

long-range $v_{0} \Rightarrow$ difference between Abs and Eels

Coulomb term v_{0} : Abs vs. Eels

F. Sottile, PhD thesis (2003) - Bulk silicon: absorption vs. EELS.

The Coulomb term v

The Coulomb term

$$
v=v_{0}+\bar{v}
$$

long-range $v_{0} \Rightarrow$ difference between Abs and Eels
what about \bar{v} ?

The Coulomb term v

The Coulomb term

$$
v=v_{0}+\bar{v}
$$

long-range $v_{0} \Rightarrow$ difference between Abs and Eels
what about \bar{v} ?
\bar{v} is responsible for crystal local-field effects

Coulomb term \bar{v} : local fields

\bar{v} : local fields

$$
\epsilon_{M}=1-V_{\mathbf{G}=0} \bar{\chi}_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}
$$

Coulomb term \bar{v} : local fields

\bar{v} : local fields

$$
\begin{gathered}
\epsilon_{M}=1-v_{\mathbf{G}=0} \bar{\chi} \mathbf{G}_{\mathbf{G}}=0, \mathbf{G}^{\prime}=0 \\
\text { Set } \bar{v}=0 \mathrm{in}: \\
\bar{\chi}_{\mathbf{G}, \mathbf{G}^{\prime}}=\chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{0}+\sum_{\mathbf{G}_{1}} \chi_{\mathbf{G}, \mathbf{G}_{1}}^{0} \bar{v}_{\mathbf{G}_{1}} \bar{\chi}_{\mathbf{G}_{1}, \mathbf{G}^{\prime}} \\
\Rightarrow \bar{\chi}_{\mathbf{G}, \mathbf{G}^{\prime}}=\chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{0}
\end{gathered}
$$

Coulomb term \bar{v} : local fields

\bar{v} : local fields

$$
\epsilon_{M}=1-V_{\mathbf{G}=0} \bar{\chi}_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}
$$

Set $\bar{v}=0$ in:

$$
\begin{gathered}
\bar{\chi} \mathbf{G}, \mathbf{G}^{\prime} \\
=\chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{0}+\sum_{\mathbf{G}_{1}} \chi_{\mathbf{G}, \mathbf{G}_{1}}^{0} \bar{v}_{\mathbf{G}_{1}} \bar{\chi}_{\mathbf{G}_{1}, \mathbf{G}^{\prime}} \\
\Rightarrow \bar{\chi}_{\mathbf{G}, \mathbf{G}^{\prime}}=\chi_{\mathbf{G}, \mathbf{G}^{\prime}}^{0}
\end{gathered}
$$

Result:

$$
\epsilon_{M}=1-v_{\mathbf{G}=0} \chi_{\mathbf{G}=0, \mathbf{G}^{\prime}=0}^{0}
$$

that is: no local-field effects! (equivalent to Fermi's golden rule)

Coulomb term \bar{v} : local fields

Bulk silicon: absorption

Coulomb term \bar{v} : local fields

A. G. Marinopoulos et al., PRL 89 (2002) - Graphite EELS

What are local fields?

Effective medium theory

Uniform field E_{0} applied to a dielectric sphere with dielectric constant ϵ in vacuum. From continuity conditions at the interface:

$$
P=\frac{3}{4 \pi} \frac{\epsilon-1}{\epsilon+2} E_{0}
$$

Jackson, Classical electrodynamics, Sec. 4.4.

What are local fields?

Effective medium theory

Regular lattice of objects dimensionality d of material ϵ_{1} in vacuum Maxwell-Garnett formulas

- dot (O D system)

$$
\operatorname{Im} \epsilon_{M}(\omega) \propto 9 \frac{\operatorname{Im} \epsilon_{1}(\omega)}{\left[\operatorname{Re} \epsilon_{1}(\omega)+2\right]^{2}+\left[\operatorname{Im} \epsilon_{1}(\omega)\right]^{2}}
$$

- wire (1D system)

$$
\begin{aligned}
& \operatorname{Im} \epsilon_{M}^{\|}(\omega) \propto \operatorname{Im} \epsilon_{1}(\omega) \\
& \operatorname{Im} \epsilon_{M}^{\frac{1}{M}}(\omega) \propto 4 \frac{\operatorname{Im} \epsilon_{1}(\omega)}{\left[\operatorname{Re} \epsilon_{1}(\omega)+1\right]^{2}+\left[\operatorname{Im} \epsilon_{1}(\omega)\right]^{2}}
\end{aligned}
$$

What are local fields?

S. Botti et al., PRB 79 (2009) SiGe nanodots

MBPT \& TDDFT

MBPT helps improving DFT \& TDDFT
 DFT \& TDDFT help improving MBPT

Conclusion

(TD)DFT \& MBPT...

try to learn both!

Many thanks!

Acknowledgements

- Silvana Botti
- Fabien Bruneval
- Valerio Olevano
- Lucia Reining
- Francesco Sottile
- Valérie Véniard

