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1 Magnetic Ground State Structure

What is collinear magnetism (CM) and non collinear
magnetism (NCM) ?
Calculation of NCM using the elk code.
A special form of NCM ⇒ spin spirals (SS).

2 Excitation of the Magnetic Structure

The low lying collective excitations (magnons)
Different approaches to calculate magnons
Magnons in the elk code (frozen magnon approach)



Ground State Calculation
Excitations

1 Magnetic Ground State Structure

What is collinear magnetism (CM) and non collinear
magnetism (NCM) ?
Calculation of NCM using the elk code.
A special form of NCM ⇒ spin spirals (SS).

2 Excitation of the Magnetic Structure

The low lying collective excitations (magnons)
Different approaches to calculate magnons
Magnons in the elk code (frozen magnon approach)



Ground State Calculation
Excitations

1st Part
Non Collinear Ground States



Ground State Calculation
Excitations

Definition of CM and NCM
NC Magnetic Ground State Calculation
The Spin Spiral Ansatz
Summary - Non Collinear Magnetic Ground States

Given a ground state |Ψ0〉 of a system the ground state
magnetic moment m0 (r) is:

m0 (r) =
2∑

αβ=1

〈
Ψ0

∣∣∣Ψ̂†α (r)~σαβΨ̂β (r)
∣∣∣Ψ0

〉
.

m(r)=0 everywhere
   (Non magnetic)

The N particle problem can not be solved, so a different
approach is needed to find the magnetic ground state of a
system.
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Definition of CM and NCM
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Using Green’s function or density functional theory (DFT) one
can find the m0 (r) of a system.

Green’s Function
m0 (r) = ~σαβGαβ

(
xx+

)
G (12) = G0 (x1x2) δαβ

+
x

d3d4G0 (13)M (34)G (42)

Mαβ =


δαβM non magnetic solution
δαβMα collinear m0 (r)
Mαβ non collinear m0 (r)

The Kohn-Sham Scheme (DFT)
No external magnetic field.

m0 (r) =
occ.∑

j

~ϕKS∗j · ~σ2×2 · ←−ϕ KS
j

εj ~ϕ
KS
j = [ĥ012×2 + vxc2×2 [ρ,m] (r)] · ~ϕKSj

ĥ0 = (−
4r

2
+ v0 (r) + vH [ρ] (r))

vxcαβ =


δαβvxc non magnetic solution
δαβvxcα collinear m0 (r)
vxcαβ non collinear m0 (r)

A non diagonal potential is necessary to get non collinear
magnetism.
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j = [ĥ012×2 + vxc2×2 [ρ,m] (r)] · ~ϕKSj
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The potential can be decomposed in a diagonal and off
diagonal part.

Exchange Correlation Potential

v xcαβ [ρm] (r) = δαβ [vxc [ρm] (r) + zαBz
xc [ρm] (r)] diagonal

+ σx
αβ · Bx

xc [ρm] (r) + σy
αβ · B

y
xc [ρm] (r) off diagonal

vxc [ρm] (r) :=
δE xc [ρm]

δρ (r)
and Bxc [ρm] (r) :=

δE xc [ρm]

δm (r)

Functionals like LSDA and GGA depend only on ρ and mz .

Exchange Correlation Potential

v xcαβ [ρm] (r) = δαβ [vxc [ρmz ] (r) + zαBz
xc [ρmz ] (r)] diagonal

+σx
αβ · Bx

xc [ρmz ] (r) + σy
αβ · B

y
xc [ρmz ] (r)︸ ︷︷ ︸

=0

off diagonal
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To save these functionals you can use the Kübler trick:
1 Starting point is a ρ2×2 (r) density:

ρ2×2 (r) :=

(
ρ↑↑ ρ↑↓
ρ↓↑ ρ↓↓

)
=

(
ρ+ mz mx − imy

mx + imy ρ−mz

)
.

2 A unitary transformation is used to diagonalize ρ2×2 (r):(
ρ̃↑ 0
0 ρ̃↓

)
= U (r) ρ2×2 (r) U† (r) with ρ̃ = ρ̃↑ + ρ̃↓

m̃z = ρ̃↑ − ρ̃↓
.

3 The ρ̃ and m̃z are inserted in vDia
xc [ρ̃m̃z ] (r).

4 The inverse unitary transformation is used to transform the
diagonal potential:(

ṽ↑↑xc ṽ↑↓xc
ṽ↓↑xc ṽ↓↓xc

)
= U† (r) vDia

xc [ρ̃m̃z ] (r) U (r) .

We have a non diagonal potential in hand, how NCM ground
state calculations are practically done?
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Properties of Bxc

B(n)
xc := Bxc

[
ρ(n−1),m(n−1)

]
‖ m(n−1) ⇔ Kübler trick (A)

B(n)
tot :=

(
Bext
MT + B(n)

xc

)
‖ m(n) ⇔ E = −m(n) · B(n)

tot (B)

Starting point: (m(0) = 0, ρ(0) = ρAtom) with
Bxc

[
ρ(0),m(0) = 0

]
= 0

An external field Bext
MT is applied in the muffin tin (MT). (not

physical!)

The m(1) ‖ Bext
MT since B(0)

xc = 0

This is conserved in the self consistent solution:

m(n) ‖ Bext
MT

(A)−→ B(n+1)
xc ‖ m(n)

↓(B)

m(n+1) ‖ Bext
MT ←− m(n+1) ‖ m(n).

m(final) ‖ Bext
MT ⇒ The external fields can be used to guide the code

towards a desired magnetic structure.
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Complicated magnetic structure ⇐⇒ Larger unit cells

If one gets m(final)
MT 6= 0 within the self consistent cycles

depends on the topology of the energy surface.
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It may converge in that structure
or go back to the NM state
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The ground state is E0 = min{All structures}
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Bloch State

~ϕnk (r) =

(
unk (1, r) e ikr

unk (2, r) e ikr

)
unk (α, r + T) = unk (α, r)
⇒m0 (r + T) = m0 (r)

Spin Spiral Ansatz

~ϕnk (r) =

(
unk (1, r) e i(k− q

2)r

unk (2, r) e i(k+ q
2)r

)

Moment is rotating with
φ = q · r.

Spin Spiral - Magnetic Moment

mq (r) = M (θ0)

cos (φ0 + q · r) sin (θ0)
sin (φ0 + q · r) sin (θ0)

cos (θ0)
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The angles θ0 and φ0 are
controlled via Bext

MT.
Periodic magnetic
structures are
constructed using a
planar spiral:

θ0 is set to 90◦
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compared to the super cells.
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For some materials DFT predicts an incommensurate spiral to
be lower in energy then the AFM state.
Experimental observation difficult1:

High q resolution required to distinguish from AFM
Tiny ∆E calls for very low temperatures.

1Q. Huang et al. Phys. Rev. B 78 054529 (2008)
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Small external fields in the muffin tins Bext
MT are used to push

the system towards a specific magnetic structure.
Depending on the topology of the energy surface the moment
converges to a finite value.
The possible number of magnetic structures is infinite and only
some structures can be tested.
Periodic magnetic structures are constructed efficiently using a
planar Spin Spiral (SS).
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Spin waves are excitations on top of a (collinear) magnetic
ordering.
The moments are distorted by small θ and start to turn with
φ = q · r from cell to cell.
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The quantized modes of the spin waves are called “magnons”.

Magnons are bosonic quasi-particles (QP) carrying 1µB .

The energies and lifetimes are ωMax
q ≈ few 100 meV and

τq ∈
[
10−4s, 10−14s

]
.

A Magnon ranges over the whole crystal
⇒ “Collective excitation”

Dispersion limq→0 ω
FM
q ∝ |q|2 and limq→0 ω

AFM
q ∝ |q|

⇒ “Low lying excitation”

Two approaches to obtain magnon spectra:

Linear Response Theory (LRT)
Frozen magnon calculations.
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The central quantity in LRT is the response function χ .
The Im [χ+− (qω)] contains the information about the
magnons:

Position of a pole → ωq
Width of the pole ∝ 1

τq
.

χ with Green’s functions

χ = P + Pvχ

χ with DFT

χ = χKS + χKS (v + fxc)χ

χij
KS =

∑
αβγδ

∑
mn

[nn − nm]σi
αβσ

j
γδ

ω + εn − εm + i0+
×

ϕ∗
n (αr1)ϕ∗

m (γr2)ϕn (δr2)ϕm (βr1)

f ij
xc =

δ2Exc [ρm]

δρi δρj
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Nevertheless it is possible with other codes.

But to some extend magnons can be already calculated with
the “frozen magnon approach”.
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Starting point is the Heisenberg Hamiltonian:

Ĥ = −1
2

∑
i 6=j

JijM̂i (t) · M̂j (t) .

The equations of motion reads:

˙̂Mj (t) =
[
Ĥ, M̂j

]
(t) =

∑
i(6=j)

Jij

(
M̂j (t)× M̂i (t)

)
〈

˙̂Mj (t)
〉
≈
∑
i(6=j)

Jij

(〈
M̂j (t)

〉
×
〈
M̂i (t)

〉)
.

The times scales of electron hopping (fast) and the magnon
movement (slow) justifies an adiabatic approximation:〈

M̂j (t)
〉
≈
〈
M̂j

〉
(t) .



Ground State Calculation
Excitations

Magnons: Definition, Properties. . .
Different Approaches to Calculate the χ+− (qω)
The Frozen Magnon Approach
Summary - Magnons

Starting point is the Heisenberg Hamiltonian:
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Spin Wave Moment

〈
M̂i

〉
(t) := Mi (t) = Mi

cos (φi (t)) sin (θi )
sin (φi (t)) sin (θi )

cos θi


θi ≈ 0

The angle φ is time dependent:

φi (t) = φ0 + q · Ri + ωqt.

y

x

z

Θ0
M

Mi (t) has no damping, so the magnons have infinite lifetime.

Insert Mi (t) in the equation of motion, linearize sin θi ≈ θi to
get an eigen value problem in real space:

θkωq =
∑
i(6=k)

Jki (δik − cos (φk − φi )) Miθi .
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The eigen value problem is transformed to inverse space:√
Mµθµωq =

∑
ν

√
MµMνRe

[
J̃q
µν

]√
Mνθν .

⇒ 0 = det
[
δµνωq −

√
MµMνRe

[
J̃q
µν

]]
The indices µ and ν run over all mMT in the unit cell.
The matrix J̃q

µν is related to the energy surface Eq ({θλ}):

Re
[
J̃q
µν

]
=

1
MµMν

∂2Eq ({θλ})
∂θµ∂θν

∣∣∣∣
{θλ}=0

.

The Eq ({θλ}) can be obtained using static SS calculations
with fixed {θλ} and q.
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The Energy Eq (θ) of an spin spiral state with one magnetic
atom per unit cell (for any θ):

Eq (θ) =
1
2
Re
[
J̃0
]
M2 (θ) +

1
2
Re
[
J̃q
]
M2 (θ) sin2 (θ) .

For small angles M (θ) ≈ M (θ = 0) = M0 and the eigenvalue
equation is also valid:

Eq (θ)
small θ
≈ EFM +

1
2
Re
[
J̃q
]
M2

0 sin
2 (θ)

ωq = M0Re
[
J̃q
]
.

Magnon Energies for one Atom per Unit Cell

ωq = lim
θ→0

2 [Eq (θ)− EFM]

M0 sin2 (θ)

The largest angles for which this equation holds depends on the material.
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In the afternoon you will do FCC Ni, which shows a bit more
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The excitation of magnons reduces the magnetic order.

The energy needed to excite magnons is related to the critical
temperature Tc .

Mean Field Approximation

TMFA
c =

M
3kBN

N∑
q∈BZ

ωq

Random Phase Approximation

TRPA
c =

MN
3kB

 N∑
q∈BZ

1
ωq

−1

In RPA values close to zero have a strong weight, hence
TRPA

c < TMFA
c .

The MFA overestimates the critical temperature
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Magnons are the low lying collective modes of the spin lattice.

At the moment the elk code can only calculate “frozen
magnons”.

The frozen magnon frequencies are obtained by energy
differences of ground state calculations (quick).

The Response function χ (qω) will be soon in the code giving
access to QP lifetimes .

There is a simple connection Tc ↔ ωq within the MFA or RPA.
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Thank you for your attention
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Questions:
1 For translation invariant potentials v (r)2×2 one finds:

T̂
[
v (r)2×2 ~ϕ

Bloch
nk (r)

]
= v (r) T̂

[
~ϕBloch

nk (r)
]
,

which is necessary to reduce the calculation to one unit cell.
How a potential must look like in the spin spiral case to obtain
the same essential property i.e.:

T̂
[
v (r)2×2 ~ϕ

SS
nk (r)

]
= v (r)2×2 T̂

[
~ϕSS

nk (r)
]
.

2 When you found the form of the potential, what are
contributions to the Hamiltonian that could destroy this
symmetry?

3 Look at the susceptibility of FeSe. What is strange?
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Things you probably need:
1 The form of the spin spiral wavefunction is

~ϕSS
nk (r) =

(
unk (1, r) e i(k− q

2)r

unk (2, r) e i(k+ q
2)r

)
where the functions unk (1, r) and unk (2, r) are translation
invariant i.e. T̂ [unk (1, r)] = unk (1, r + T) = unk (1, r).

2 The picture of the Imχ+− (qω) in FeSe:
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