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Problem 1: Time-dependent Linear Response Theory

1 A system is governed by the Hamiltonian Ĥ(t) = Ĥ0(t) + f (t)V̂, so that its
evolution is given by:

i
∂

∂t
ρ̂(t) =

[
Ĥ(t), ρ̂(t)

]
,

Show that, to first order in f , the change in the value of the expectation value
of some observable Â due to the presence of the perturbation f (t)V̂ is given
by:

δA(t) = 〈Â〉(t)− 〈Â〉f=0(t) =

∫ ∞
−∞

dt′ f (t′)χÂ,V̂(t, t′) ,

where the linear response function is given by:

χÂ,V̂(t, t′) = −iθ(t − t′)Tr{ρ̂(t0)
[
ÂH(t), V̂H(t′)

]
} .

X̂H(t) = Û(t0, t)X̂Û(t, t0) is the Heisenberg representation of X̂, where Û(t, t0)
is the evolution operator in the absence of the perturbation.
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Problem 1: Time-dependent Linear Response Theory

Solution:
1 Expand ρ̂(t) in a power series in f :

ρ̂(t) =

∞∑
n=0

ρ̂n(t) ,

where ρ̂0 is the unperturbed solution, ρ̂1 is linear in f , etc.
2 Find the differential equations that verify ρ̂0 and ρ̂1, and verify that they

are equivalent to the integral equations:

ρ̂0(t) = Û(t, t0)ρ̂(t0)Û(t0, t) ,

ρ̂1(t) = −i
∫ t

t0

dt′ Û(t, t′)
[
f (t′)V̂, ρ̂0(t′)

]
Û(t′, t) ,

3 To first order in f ,
δA(t) = Tr{ρ̂1(t)Â} .

Substituting ρ̂1(t), after some algebra one arrives to the final result.
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Problem 1: Time-dependent Linear Response Theory

2 Show that, at equilibrium (Ĥ0 is time-independent and
[
Ĥ0, ρ̂(t0)

]
= 0), the

response function is translationally invariant in time, i.e.:

χÂ,V̂(t, t′) = χÂ,V̂(t + ∆, t′ + ∆) .

and therefore it only depends on the time-difference t − t′. One can then
define a single-valued response function:

χÂ,V̂(τ) := χÂ,V̂(t + τ, t) .

Prove that this function is given by:

χÂ,V̂(τ) = −iθ(τ)Tr{ρ̂(t0)
[
eiτ Ĥ0 Âe−iτ Ĥ0 , V̂

]
}
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Problem 1: Time-dependent Linear Response Theory

3 Sum-over-states. Derive the sum-over-states formula, i.e.:

χÂ,V̂(ω) =
1√
2π

∑
I

{ AI0V0I

ω − (EI − E0)− iη
− A0IVI0

ω + (EI − E0)− iη
}

for the Fourier transform of the equilibrium response function:

χÂ,V̂(ω) =
1√
2π

∫ ∞
−∞

dτ χÂ,V̂(τ) ,

assuming a pure system perturbed from its ground state |Ψ0〉.

Solution:
1 Insert the resolution of the identity in the expression for the response

function given in the previous problem,
2 Apply the following formula for the Fourier transform of the Heaviside

function:
θ(ω) =

1√
2π

1
δ + iω

.
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Problem 1: Time-dependent Linear Response Theory

4 In density-functional theories what we like is the “density-density” response
function:

χ(r.r′, ω) := χn̂(r),n̂(r′)(ω) .

Prove that
χ(r.r′, ω) =

δn(r, ω)

δv(r′, ω)
.
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Problem 2: Quantum Optimal Control Theory

1 A system is governed by the Hamiltonian Ĥ[u](t) = Ĥ+ ε[u](t)V̂, so that its
evolution is given by:

i
∂

∂t
ρ̂[u](t) =

[
Ĥ[u](t), ρ̂[u](t)

]
, ρ̂[u](t0) = ρ̂init ,

where u is a real parameter that determine the precise shape of the real
function ε.
Given the function G[u] = Tr{ρ̂[u](tf )Â} (the expectation value of some
observable Â at some final time tf ), show that:

∂G
∂u

[u] = −i
∫ tf

t0

dτ
∂ε

∂u
[u](τ)Tr{ρ̂[u](τ)

[
Â[u](τ), V̂

]
} .

where Â[u] is defined as:

∂

∂t
Â[u](t) = −i

[
Ĥ[u](t), Â[u](t)

]
,

Â[u](tf ) = Â .

These are the “QOCT equations”.
TDDFT II



Problem 1: Time-dependent Linear Response Theory
Problem 2: Quantum Optimal Control Theory

Problem 3: Optical absorption with TDDFT in the time domain
Problem 4: The “time-dependent” energy.

Problem 5: Ehrenfest dynamics with TDDFT

Problem 2: Quantum Optimal Control Theory

Solution:
1 Obviously, ∂G

∂u [u] = lim∆u→0 ∆u−1(G[u + ∆u]− G[u]).
2 Note that G[u] corresponds to the propagation of the system with the

Hamiltonian Ĥ[u](t), whereas G[u + ∆u] corresponds to the propagation
of the system with:

Ĥ[u + ∆u](t) = Ĥ[u](t) + ∆u
∂ε

∂u
[u]V̂ .

3 Now we can use directly the LRT result of the previous problem, by
making the identifications,

Ĥ0(t) = Ĥ[u](t), f (t) = ∆u
∂ε

∂u
[u](t) .

and we arrive at:

∂G
∂u

[u] =

∫ ∞
t0

dτ
∂ε

∂u
[u](τ)χÂ,V̂(tf , τ) .
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Ĥ0(t) = Ĥ[u](t), f (t) = ∆u
∂ε

∂u
[u](t) .

and we arrive at:

∂G
∂u

[u] =

∫ ∞
t0

dτ
∂ε

∂u
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Problem 2: Quantum Optimal Control Theory

2 Show that, for pure systems (ρ̂[u](t) = |Ψ[u](t)〉〈Ψ[u](t)|), the previous
result is:

∂G
∂u

[u] = 2Im
∫ tf

t0

dτ
∂ε

∂u
[u](τ)〈χ[u](τ)|V̂|Ψ[u](τ)〉 .

∂

∂t
|χ(t)〉 = −iĤ[u](t)|χ(t)〉 ,

|χ(tf )〉 = Â|Ψ[u](tf )〉 ,
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Problem 3: Optical absorption with TDDFT in the time domain

1 Consider an atom or molecule (assume, for the sake of simplicity, clamped
nuclei and the Born-Oppenheimer approximation). The linear response
function, in the case in which Â is the (i-th component of the dipole moment
operator),

R̂i =

N∑
n=1

r̂i
n

and V̂ = −R̂j is (minus) the j-th component of the dipole moment operator,

R̂j =

h∑
n=1

r̂j
n

receives the special name of (i,j) component of the (dynamical)
(dipole-dipole) (linear) polarizability tensor, αij(ω) .
It measures the (dipole) response of the system to a (weak) light interaction
in the dipole approximation.
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Problem 3: Optical absorption with TDDFT in the time domain

Prove that:
αij(ω) = −

∫ ∫
d3rd3r′ xixjχ(r, r′, ω) .

Solution:
1 You just need to remember that the linear polarizability happens to be

linear, and that for any one-body local operator:

Â =

N∑
n=1

a(r̂i) .

it holds that:
Â =

∫
d3rn̂(r)a(r) .
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2 Let us describe the physical system by its Kohn-Sham counterpart. We
compute the ground-state Kohn-Sham orbitals {ϕgs

i (r)}N/2
i=1 (assume a

spin-restricted case), and we define the following transformation, that
preserves the ground state density n0(r):

ϕi(r, t = 0) = e−iκxjϕgs
i (r) .

We now propagate the TDKS equations for this set of orbitals {ϕi(r, t)}N/2
i=1 ,

and compute
δn(r, ω) = n(r, ω)− n0(r) ,

where n is the density of the time-dependent Kohn-Sham system,
n(r, t) =

∑N/2
n=1 2|ϕn(r, t)|2.

Prove that:
αij(ω) =

1
κ

∫
d3r δn(r, ω)xi .
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Problem 3: Optical absorption with TDDFT in the time domain

Solution:
1 If we apply an instantaneous perturbation of the form κδ(t − t0)V̂ on a

system that is at its ground state |Ψ0〉 at t = 0, it holds that (prove!):

|Ψ(0+) = e−iκV̂ |Ψ0〉 .

2 The equilibrium response function can then be computed as:

χÂ,V̂(t) = lim
κ→0

1
κ
δA(t) .

This provides a very intuitive picture of what the linear response function
represents.

3 If the measured observable is the dipole operator, the only thing we need
is the time-dependent density, and therefore we can solve the TDKS
equations instead:

〈R̂i〉(t) =

∫
d3r n(~r)xi .
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1. The Green Fluorescent Protein (GFP) and its mutants

Marques et al., Phys. Rev. Lett. 90, 258101 (2003).
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Problem 4: The “time-dependent energy”

1 A system of electrons evolves from its ground state at time zero according
to a time-dependent Hamiltonian in the form:

Ĥ(t) = T̂ + Ŵ +
N∑

n=1

v(r̂i, t) .

We define the “time-dependent energy” as:

E(t) = 〈Ψ(t)|Ĥ(t)|Ψ(t)〉 .

Prove that it is an explict density functional:

d
dt

E(t) =

∫
d3rn(r, t)∂v

∂t
(r, t) ,

or, in other words:

E(t) = E0 +

∫ t

0
dτ
∫

d3rn(r, t)∂v
∂t

(r, t) ,
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2 E(t) can therefore be computed exactly with exact TDDFT.

However, we will normally use an approximate, normally adiabatic exchange
and correlation potential “A”. This is usually derived from a ground state xc
energy functional, EA

xc[n], from which the ground state xc potential functional
is derived by functional derivation:

vA
xc[n](r) =

δEA
xc

δn(r)
.

The time-dependent adiabatic extension of A will be defined as:

vA
tdxc[n](r, t) = vA

xc[n(t)](r) .

The time-dependent energy obtained with this approximation will be EA(t).
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The ground state DFT energy density functional is defined as:

EA
gsDFT[n] = TS[n] + U[n] + V[n] + EA

xc[n] .

We can redefine it as a functional of the orbitals:

EA
gsDFT[ϕ] = TS[ϕ] + U[ϕ] + V[ϕ] + EA

xc[ϕ] .

Is it true that
EA(t) = EA

gsDFT[ϕ(t)] ?
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Solution (1, brute force):
1 One has to prove that the time-derivatives of the two quantities coincide

(and just assume the initial value, which is irrelevant anyways,
coincides).

2 It may be useful to prove first the following identity:

EA
gsDFT[ϕ(t)] =

N∑
i=1

εi[ϕ(t)]− U[ϕ(t)] + EA
xc[ϕ(t)]−

∫
d3r n(~r, t)vxc[n(t)](~r) .

3 The TDKS system is a system of non-interacting electrons whose
energy is:

EA
KS(t) =

N∑
i=1

εi[ϕ(t)] .

Its time derivative is related to that of the true system by:

d
dt

EA
KS(t) =

d
dt

EA(t) +

∫
d3r n(~r, t){ ∂

∂t
vHartree[n(t)] +

∂

∂t
vA

xc[n(t)]}
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Solution (1, brute force):
1 One has to prove that the time-derivatives of the two quantities coincide

(and just assume the initial value, which is irrelevant anyways,
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Problem 4: The “time-dependent energy”

Solution (2, Lagrangian formulation):
1 Prove that the TDKS equations can be derived from the following

Lagrangian, assuming a time-independent external potential:

L[ϕ(t), ϕ̇(t)] =
i
2

∫
d3r

N∑
n=1

{ϕ∗n (~r, t)ϕ̇n(~r, t)− ϕ̇∗n (~r, t)ϕn(~r, t)}−EA
gsDFT[ϕ(t)]

I.e., the TDKS equations are the Euler-Lagrange equations:

d
dt

∂L
∂ϕ̇∗(~r, t)

=
∂L

∂ϕ∗(~r, t)

2 Once we have a Lagrangian, we can apply Noether’s theorem to find
conserved quantities. The time-independence of the Lagrangian, in this
case, prescribes the time-independence of EA

gsDFT[ϕ(t)].
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Problem 4: The “time-dependent energy”

1 Now add a time-dependent external local field, vext(~r, t):

L̃[ϕ(t), ϕ̇(t), t] = L[ϕ(t), ϕ̇(t)]−
∫

d3r n(~r, t)vext(r, t) .

2 By making use of the chain rule, and Euler’s Lagrange equations,
compute the total time derivative of L̃, and compare it to its partial
derivative.
See how the partial derivative of the Lagrangian is related to the total
derivative of EA

gsDFT[ϕ(t)], and this relationship in fact completes the proof.

TDDFT II



Problem 1: Time-dependent Linear Response Theory
Problem 2: Quantum Optimal Control Theory

Problem 3: Optical absorption with TDDFT in the time domain
Problem 4: The “time-dependent” energy.

Problem 5: Ehrenfest dynamics with TDDFT

Problem 4: The “time-dependent energy”

1 Now add a time-dependent external local field, vext(~r, t):

L̃[ϕ(t), ϕ̇(t), t] = L[ϕ(t), ϕ̇(t)]−
∫

d3r n(~r, t)vext(r, t) .

2 By making use of the chain rule, and Euler’s Lagrange equations,
compute the total time derivative of L̃, and compare it to its partial
derivative.
See how the partial derivative of the Lagrangian is related to the total
derivative of EA

gsDFT[ϕ(t)], and this relationship in fact completes the proof.

TDDFT II



Problem 1: Time-dependent Linear Response Theory
Problem 2: Quantum Optimal Control Theory

Problem 3: Optical absorption with TDDFT in the time domain
Problem 4: The “time-dependent” energy.

Problem 5: Ehrenfest dynamics with TDDFT

Problem 4: The “time-dependent energy”

3 Given a Hermitian NxN matrix (N is the number of KS orbitals), we consider
the transformation:

ϕ′m =

N∑
n=1

(e−iS)mnϕn .

Prove that the Lagrangian is invariant under this transformation. Prove that
this fact leads, through the use of Noether’s theorem, to conclude that the
time-dependent Kohn-Sham orbitals are orthonormal at all times.
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Problem 5: Ehrenfest dynamics with TDDFT

1 Given a system formed by classical nuclei and quantum electrons, the
Ehrenfest model for the description of the dynamics of this system is given by:

i
d
dt
|Φ(t)〉 = {T̂ + V̂(r̂,R(t), t)}|Φ(t)〉 ,

Mα
d
dt

Rα = Pα ,

d
dt

Pα = −〈Φ(t)|∇Rα V̂(r̂,R(t), t)|Φ(t)〉 .

r̂ is the full set of N electron coordinate operators, R is the full set of
(classical) nuclear coordinates, P the nuclear momenta, and V(r,R(t), t) is
the full potential, including the electron-electron, nucleus-nucleus, electron
nucleus, and external (time-dependent) potential:

V̂(r̂,R(t), t) =
∑
m<n

1
|r̂m − r̂n|

+
∑
α<β

zαzβ
|Rα(t)− R̂β(t)|

−
∑
α,m

zα
|r̂m − R̂α(t)|

+
∑

m

velectrons
ext (r̂m) +

∑
α

vnuclei
ext (R̂α(t)) .
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Problem 5: Ehrenfest dynamics with TDDFT

Project these equations into the adiabatic basis,

{T̂ + Vint(r,R)}|Φk(R)〉 = Ek(R)|Φk(R)〉 ,

and prove that, in the absence of external fields, Ehrenfest dynamics reduces
to ground state Born-Oppenheimer Molecular Dynamics,

d
dt

Pα = −∇RαE0(R(t) ,

if the system starts starts its evolution from the electronic ground state, and
either the non-adiabatic couplings,

dαjk(R = 〈Φj(R)|∇Rα |Φk(R)〉

are negligible or the electronic gap,

∆(R) = E1(R)− E0(R) ,

is very large.
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Problem 5: Ehrenfest dynamics with TDDFT

2 Prove that within the Ehrenfest model, the nuclear dynamics can be
followed exactly within exact TDDFT, without the need of propagating the real
interacting wave function.

Solution

One just needs to prove that the force is an explicit functional of the
time-dependent density:

d
dt

Pγ = −〈Φ(t)|∇Rγ V(r,R(t), t)|Φ(t)〉 .

= −∇Rγ

∑
α<β

zαzβ
|Rα(t)− R̂β(t)|

−
∫

d3r n(r, t)∇Rα

∑
α

1
|r− Rα(t)|

−
∫

d3r n(r, t)velectrons
ext (r, t) .
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Example

Combustion of
acetylene.

Calculation
performed with
Ehrenfest-MD
based on TDDFT.

The “clouds”
represent the
time-dependent
electron
localization
function.
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