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Electronic structure problem

What atoms, molecules, and solids can exist, and with what
properties?

Figure: My first ever DFT transparency
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Atomic units

In atomic units, all energies are in Hartree (1H= 27.2 eV) and all
distances in Bohr (1a0 = 0.529 Å)

To write formulas in atomic units, set e2 = ~ = me = 1

In regular units,
I 1 H = 27.2eV
I 1 eV = 23.06 kcal/mol
I 1 kcal = 4.184 kJ/mol = 503K.
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Born-Oppenheimer approximation

Because of difference between proton and electron mass, can separate
wavefunction into product to an excellent approximation.

Because electronic energies are in eV and much greater than 300K,
electrons always in ground state.

Yields

Etotal = Enuc({Rα}) + Eelec({Rα})

where electons are in ground state.

Knowing Etotal ({Rα}) yields structures from minima, vibrations from
curvature, all reaction energies from well-depths, all transition states
from saddle points, etc.
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Hamiltonian

Hamiltonian for N electrons in the presence of external potential v(r):

Ĥ = T̂ + V̂ee + V̂ ,

where the kinetic and elec-elec repulsion energies are

T̂ = −1
2

N∑
i=1
∇2

i , V̂ee =
1
2

N∑
i=1

N∑
j 6=i

1
|ri − rj |

,

and difference between systems is N and the one-body potential

V̂ =
N∑

i=1
v(ri )

Often v(r) is electron-nucleus attraction

v(r) = −
∑
α

Zα
|r − Rα|

where α runs over all nuclei, plus weak applied E and B fields.
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Schrödinger equation

6N-dimensional Schrödinger equation for stationary states

{T̂ + V̂ee + V̂ }Ψ = E Ψ, Ψ antisym

The one-particle density is much simpler than Ψ:

n(r) = N
∑
σ1

. . .
∑
σN

∫
d3r2 . . . d3rN |Ψ(rσ1, r2σ2, . . . , rNσN)|2

and n(r) d3r gives probability of finding any electron in d3r around r.
Wavefunction variational principle:

I E [Ψ] ≡ 〈Ψ|Ĥ|Ψ〉 is a functional
I Extrema of E [Ψ] are stationary states, and ground-state energy is

E = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ |Ψ〉

where Ψ is normalized and antisym.

Kieron (UC Irvine) Basics of DFT ELK 2011 8 / 61



Outline

1 General background

2 DFT

3 Common functionals

4 Tough exact conditions

5 Why exact exchange is mixed in?

6 Miscellaneous

Kieron (UC Irvine) Basics of DFT ELK 2011 9 / 61



References for ground-state DFT

ABC of DFT, by KB and Rudy Magyar, http://dft.uci.edu/

A Primer in Density Functional Theory, edited by C. Fiolhais et al.
(Springer-Verlag, NY, 2003)

Density Functional Theory, Dreizler and Gross, (Springer-Verlag,
Berlin, 1990)

Density Functional Theory of Atoms and Molecules, Parr and Yang,
(Oxford, New York, 1989)

A Chemist’s Guide to Density Functional Theory, Koch and
Holthausen (Wiley-VCH, Weinheim, 2000)

Which functional should I choose? Rappoport, Crawford, Furche, and
Burke. http://dft.uci.edu/
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Brief history of DFT

1926: Old DFT was Thomas-Fermi theory and extensions.

50’s and 60’s: Slater and co-workers develop Xα as crude KS-LDA.

1965: Modern DFT begins with Kohn-Sham equations. By
introducing orbitals, get 99% of the kinetic energy right, get accurate
n(r), and only need to approximate a small contribution, EXC[n].

1965: KS also suggested local density approximation (LDA) and
gradient expansion approximation.

1993: More modern functionals (GGA’s and hybrids) shown to be
usefully accurate for thermochemistry

1998: Kohn and Pople win Nobel prize in chemistry

2010: DFT in materials science, geology, soil science, astrophysics,
protein folding,...
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Hohenberg-Kohn theorem (1964)

1 Rewrite variational principle (Levy 79):

E = min
Ψ
〈Ψ|T̂ + V̂ee + V̂ |Ψ〉

= min
n

{
F [n] +

∫
d3r v(r)n(r)

}
where

F [n] = min
Ψ→n
〈Ψ|T̂ + V̂ee|Ψ〉

I The minimum is taken over all positive n(r) such that
∫
d3r n(r) = N

2 The external potential v(r) and the hamiltonian Ĥ are determined to
within an additive constant by n(r)

P. Hohenberg and W. Kohn, Phys. Rev. 136, B 864 (1964).

M. Levy, Proc. Natl. Acad. Sci. (U.S.A.) 76, 6062 (1979).
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Kohn-Sham 1965

Define fictitious non-interacting electrons satisfying:

{
−1
2∇

2 + vS(r)
}
φi (r) = εiφi (r),

N∑
i=1
|φi (r)|2 = n(r).

where vS(r) is defined to yield n(r).
Define TS as the kinetic energy of the KS electrons, U as their
Hartree energy and

T + Vee = TS + U + EXC

the remainder is the exchange-correlation energy.
Most important result of exact DFT:

vS(r) = vext(r) +

∫
d3r n(r′)
|r − r′| +vXC[n](r), vXC(r) =

δEXC

δn(r)

Knowing EXC[n] gives closed set of self-consistent equations.Kieron (UC Irvine) Basics of DFT ELK 2011 13 / 61



Kohn-Sham energy components

The KS kinetic energy is the kinetic energy of the KS orbitals

TS[n] =
1
2

N∑
i=1

∫
d3r |∇φi (r)|2 > 0

The Hartree (aka Coulomb aka electrostatic) repulsive self-energy of
a charge density is

U[n] =
1
2

∫
d3r

∫
d3r ′ n(r) n(r′)

|r − r′| > 0

The exchange energy is

−1
2
∑
σ

∑
i,j
occ

∫
d3r

∫
d3r ′

φ∗iσ(r)φ∗jσ(r′)φiσ(r′)φjσ(r)
|r − r′|

EC is everything else.
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Kohn-Sham elementary facts

T and Vee are both positive, trying to rip system apart, but overcome
by more negative V .
Kinetic energies are positive, and T > TS by definition.
U is positive and dominates the electron-electron repulsion.
EX only has contributions from same-spin electrons and is negative.
This part is given exactly by a HF calculation.
The electron-electron repulsion of the KS wavefunction is just

〈Φ[n]|V̂ee|Φ[n]〉 = U[n] + EX[n]

EC contains both kinetic and potential contributions:

EC = 〈Ψ[n]|T̂ + V̂ee|Ψ[n]〉 − 〈Φ[n]|T̂ + V̂ee|Φ[n]〉
= (T − TS) + (Vee − U − EX) = TC + UC
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KS potential of He atom

n(r)

r r

vext(r)
vS(r)

Every density has (at most) one KS potential.1
Dashed line: vS(r) is the exact KS potential.

1 Accurate exchange-correlation potentials and total-energy components for the
helium isoelectronic series, C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).
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Energy components of small spherical atoms

T Vext Vee TS U EX TC UC EC

He 2.904 -6.753 0.946 2.867 2.049 -1.025 .037 -.079 -.042
Be 14.67 -33.71 4.375 14.59 7.218 -2.674 .073 -.169 -.096
Ne 128.9 -311.1 53.24 128.6 66.05 -12.09 .33 -.72 -.39

Table: Energy components found from the exact densities.

Huang and Umrigar, Phys. Rev. A 56, 290, (1997)

Thanks to Cyrus Umrigar, Xavier Gonze, and Claudia Filippi.
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Important points about KS calculations

The total energy is not the sum of the orbital energies:

E 6=
N∑

i=1
εi

If some approximation is used for EXC, then energy can go below the
exact ground-state energy.
Any given formula for EXC, no matter where it came from, produces a
non-empirical scheme for all electronic systems.
The KS scheme, even with the exact functional, yields only E and
n(r) (and anything that can be deduced from them).
In principle, from HK, all properties are determined by n(r), but in
reality, we only know one really well.
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The KS HOMO-LUMO gap is not the fundamental gap

The fundamental gap of any system
I ∆ = I − A (= 24.6 eV for He)

The exact Kohn-Sham gap:
I ∆S = εHOMO − εLUMO (= ε1s − ε2s = 21.16 eV for He)

These gaps are not the same!

KS gap is typically smaller than ∆

Most notorious case: bulk Si

The exact ground-state EXC[n] produces a KS gap different from the
fundamental gap.
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Spin DFT

In modern reality, everyone uses spin-density functional theory
I U. von Barth and L. Hedin, J. Phys. C 5, 1629 (1972).

Can easily generalize theorems and equations to spin densities, n↑(r)
and n↓(r), with two different KS potentials.

No difference for spin-unpolarized systems, but much more accurate
otherwise (odd electron number, radicals, etc.)

Spin-scaling trivial for EX, not so for correlation.

Can handle collinear B fields
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Lessons about basic DFT

DFT is
I different from all other methods of directly solving the Schrödinger

equation.
I in principle exact for E and n(r), knowing only EXC[n].
I approximate in practice.

Exact DFT tells us what we can and cannot expect our functionals to
be able to do.

vS(r) and φj(r) are not real, just logical constructions. The φj(r) can
be very useful interpretative tools and follow intuition, but vS(r) is
dangerous.
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Functionals in common use

Local density approximation (LDA)
I Uses only n(r) at a point,

ELDA
XC [n] =

∫
d3r eunif

XC (n(r))

Generalized gradient approx (GGA)
I Uses both n(r) and |∇n(r)|

EGGA
XC [n] =

∫
d3r eXC(n(r), |∇n|)

I Examples are PBE and BLYP
Hybrid:

Ehyb
XC [n] = a(EX − EGGA

X ) + EGGA
XC [n]

I Mixes some fraction of HF, a usually about 25%
I Examples are B3LYP and PBE0
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Functional Soup

Good: choose one functional of each kind and stick with it (e.g.,
LDA, PBE, or PBE0).

Bad: Run several functionals, and pick ‘best’ answer.

Ugly: Design your own functional with 2300 parameters.

Empirical
I GGA: BLYP
I Hybrid: B3LYP

Names:
I B=B88 exchange
I LYP = Lee-Yang-Parr

correlation

Non-empirical
I GGA:PBE
I Meta-GGA: TPSS
I Hybrid: PBE0

Kieron (UC Irvine) Basics of DFT ELK 2011 24 / 61



Functional Soup

Good: choose one functional of each kind and stick with it (e.g.,
LDA, PBE, or PBE0).

Bad: Run several functionals, and pick ‘best’ answer.

Ugly: Design your own functional with 2300 parameters.

Empirical
I GGA: BLYP
I Hybrid: B3LYP

Names:
I B=B88 exchange
I LYP = Lee-Yang-Parr

correlation

Non-empirical
I GGA:PBE
I Meta-GGA: TPSS
I Hybrid: PBE0

Kieron (UC Irvine) Basics of DFT ELK 2011 24 / 61



Functional Soup

Good: choose one functional of each kind and stick with it (e.g.,
LDA, PBE, or PBE0).

Bad: Run several functionals, and pick ‘best’ answer.

Ugly: Design your own functional with 2300 parameters.

Empirical
I GGA: BLYP
I Hybrid: B3LYP

Names:
I B=B88 exchange
I LYP = Lee-Yang-Parr

correlation

Non-empirical
I GGA:PBE
I Meta-GGA: TPSS
I Hybrid: PBE0

Kieron (UC Irvine) Basics of DFT ELK 2011 24 / 61



Local density approximation (LDA)

Exchange is trivial (Dirac, 1931)

eunif
X (n) = AX n4/3, AX = −0.738

Correlation energy known:
eunif

C (n) was accurately calculated by QMC
I D. M. Ceperley and B. J. Alder, Phys. Rev. Lett. 45, 566 (1980).

Several different accurate parametrizations in use:
I PW92 – Perdew and Wang, Phys. Rev. B 45, 13244 (1992)

I PZ81 – Perdew and Zunger, Phys. Rev. B 23, 5048 (1981)

I VWN80, aka S-VWN-5
S.H. Vosco, L. Wilk, and M. Nusair, Can. J. Phys. 58(8): 1200 (1980)
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LDA (or LSDA) general performance

For total energies, EX is underestimated by about 10%, EC is
overestimated by about 200%, so EXC is good to about 7%
(mysterious cancellation of errors).
For bond dissociation energies, LDA overbinds by about 1 eV /bond
(30 kcal/mol), so no good for thermochemistry.
Typical bond lengths are underestimated by 1% (unless involving an
H atom), so excellent geometries and vibrations. So still used for
structure.
Bulk Fe is non-magnetic, because wrong structure has lowest energy.
Transitions to unoccupied orbitals in bulk insulators a rough guide to
quasiparticle excitations, except for too small gap.

Kieron (UC Irvine) Basics of DFT ELK 2011 26 / 61



Densities

Figure: Exact and LDA radial densities of the Ne atom.
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Easy conditions

Size-consistency:

EXC[nA + nB] = EXC[nA] + EXC[nB],

where nA(r) and nB(r) do not overlap.

Uniform limit: Recover exact XC bulk jellium energy if n is constant.

Linear response of uniform gas: LDA is almost exact for linear
response to perturbation cos(q · r) for q ≤ 2kF.

Lieb-Oxford bound: Magnitude of EXC cannot be greater than 2.3
ELDA

X .
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Uniform coordinate scaling

-1 0 1
0

2

x

nΓHxL
nHxL

Figure: A one-dimensional density (red) being squeezed by γ = 2 (blue)

A very handy way to study density functionals, especially in limits:
nγ(r) = γ3 n(γr), 0 ≤ γ ≤ ∞

I For γ > 1, squeezes up the density, preserving norm; for γ < 1,
stretches it out.

Exchange: Require EX[nγ ] = γ EX[n]
Correlation: EC[nγ ] = B[n] + C [n]/γ + ... for high density limit of
finite systems. (Violated by LDA!)
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History of GGA

Gradient expansion approximation (GEA): Expansion in density
gradients that is valid for slowly-varying gas, discussed in KS65.
Langreth-Mehl 81: First modern GGA, but cut-off in wavevector
space.
PW86: Early version of Perdew strategy, cutting off
gradient-expanded hole in real space. (Phys. Rev. B, 33)

B88: Axel Becke EGGA
X , based on energy density of atoms, one

parameter (Phys. Rev. A. 38)

LYP, 88: Lee-Yang-Parr turn Colle-Salvetti orbital functional for
atoms into an EC[n] (Phys. Rev. B. 37)

PW91: Parametrization of real-space cut-off procedure
PBE, 96: A re-parametrization and simplification of PW91
RPBE, 99: Danish version, improves surface energetics
PBEsol, 08: Revised PBE for solids
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Philosophy of GGA

If LDA is very reliable using only n(r), surely can be more accurate if
use ∇n(r) too.
Use exact conditions to constrain construction.
Non-empirical (Perdew):

I Use known QM limits to fix all parameters.
I Retains systematic error
I Controlled extrapolation away from known limits

Empirical (Becke):
I Fit parameters to atoms and molecules.
I Minimizes error on fitted and similar systems
I Fails badly when applied elsewhere

Pragmatic (Kieron):
I Judge a Perdew functional by its derivation, not its numbers
I Judge a Becke functional by the numbers, not its derivation.
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PBE, 1996

Correlation:
I In slowly varying limit, EC → EGEA

C .
I In rapidly varying limit, EC → ELDA

C .
I In high-density limit, EC → −const.

Exchange:
I Under uniform scaling, EX[nγ ] = γEX[n].
I Under spin-scaling, EX[n↑, n↓] = (EX[2n↑] + EX[2n↓])/2.
I Linear response same as LDA.
I Lieb-Oxford bound: EXC ≥ 2.3ELDA

X .
Leads to enhancement factor:

FX(s) = 1 + κ− κ/(1 + µs2/κ), κ ≤ 0.804.

Performance
I Reduces LDA overbinding by 2-3.
I Overcorrects bond lengths to about +1%.
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Hybrids

A hybrid functional replaces some fixed fraction of GGA exchange
with exact exchange.

First proposed by Becke
I A.D. Becke, J. Chem. Phys. 98, 5648 (1993).

Morphed into the infamous B3LYP, now most used functional in DFT.

The 3 in B3LYP is 3 fitted parameters, but other 2 just modify GGA.

PBE0 is the derived version, with 1/4 mixing rationalized.
I Burke, Ernzerhof, and Perdew. Chem. Phys. Lett. 265, 1996
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Typical results with functionals

G2 Data Set of small molecules
m.a.e. HF LDA PBE BLYP Hybrid

kcal/mol 100 30 10 6 3

BLYP for uniform gas
rs 0.1 1 2 5 10

error -50% -30% -40% -50% -60%

Successive improvement (in energetics) at increasing computational
cost.

Kieron (UC Irvine) Basics of DFT ELK 2011 34 / 61



Applications of DFT

Tens of thousands of papers every year.
Appearing in every branch of science:

I Solid-state physics
I Chemistry
I Biochemistry
I Geology
I Astrophysics

Traditionally divided into finite systems (molecules) and extended
(solids), but distinction is breaking down.
Codes divided into either using localized basis functions (usually
Gaussians) or plane waves.
Examples:

I Many throughout week.
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At the edge of all matter...

Asymptotic decay of the density√
n(r)→ Arβe−

√
2Ir

leads to severe constraint on XC potential:

vXC(r)→ −1/r (r →∞)

and determines KS HOMO: εHOMO = −I
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As a function of N , the energy is a sequence of straight
line segments

R.M. Dreizler and E.K.U. Gross, Density
Functional Theory (Springer-Verlag,
Berlin, 1990).

µ =
∂E
∂N

= −
{

I, N ≤ Z
A, N > Z
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The KS potential jumps suddenly as N crosses an integer

When you add a tiny fraction of an electron to a system, the KS
potential shifts uniformly, since before, εHOMO(N) = −I, but now,
εHOMO(N + δ) = −A
Thus vS(r) must jump by

∆XC = (I − A) + (εHOMO − εLUMO) = −εLUMO − A

Very important in DFT calculations of:
I molecules approaching each other, before they bond covalently.
I single-molecule transport if molecule is weakly bound to leads.
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There are sharp steps in the KS potential between
separated systems

Figure: Cartoon of step in KS potential between two well-separated open-shell
fragments.

N. T. Maitra, J. Chem. Phys. 122, 234104 (2005).
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Energy as a function of electrons transferred for a
stretched bond

Figure: Total energy of separated LiH as a function of the number of electrons
transferred from Li to H.

What do the Kohn-Sham orbitals mean? How do atoms dissociate?, J.P. Perdew, in
Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia
(Plenum, NY, 1985), p. 265.
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Static correlation is not the same as strong correlation

Effect of small gaps in molecules, if they dissociate into open shells.
Worsens as bond length increases, producing unbalanced error.
Called static correlation as there’s no analog in, eg, uniform gas.
Very slight in total energy, still small in dissociation energy, but
causes GGA errors of order 10 kcal/mol.
Biggest effect in multiple bonds, e.g., N2.
Worst cases are Cr2 at equilibrium, or stretched H2.
Can understand how mixing exact exchange improves energetics when
static correlation is present.
Explains accuracy of hybrids for bonds and transition state barriers.
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Stretched H2

Consider H2 as R →∞:
I e.g. Yang et. al, 8 August 2008 Science 321 (5890), 792

E (R)→ 2E (H), R →∞

But Ψ is always a singlet, for large but finite R, have 1/2 electron of
each spin on each atom.
Single-reference wavefunction has one doubly-occupied molecular
orbital, but Ψ becomes Heitler-London wavefunction, which is
completely different.
Any single-reference theory gives spin-unpolarized H atoms that are
wrong in energy.
Symmetry dilemma: Can allow spin-symmetry to break, and get right
energetics, but then no longer a spin eigenstate.
Coulson-Fischer point is R when symmetry spontaneously breaks in
approximate treatment
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Adiabatic connection and relation to scaling
Write XC energy as integral over coupling constant, n(r) fixed:

EλXC[n] = λ2 EXC[n1/λ], EXC[n] =

∫ 1

0
dλdE

λ
XC

dλ =

∫ 1

0
dλUλ

XC[n]

D.C. Langreth and J.P. Perdew, Solid State Commun. 17, 1425 (1975).

O. Gunnarsson and B.I. Lundqvist, Phys. Rev. B 13, 4274 (1976).

Figure: Adiabatic connection curve for He in various approximations
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Static correlation shows up in adiabatic connection

Figure: Adiabatic connection in various approximations for H2 at 5Å.

M. Fuchs, Y.-M. Niquet, X. Gonze, and K. Burke, J. Chem. Phys. 122, 094116 (2005)
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Adiabatic connection for dissociation energy of N2

Figure: Adiabatic decomposition of XC energy difference between N2 and 2 N
atoms

You can ‘derive’ the 1
4 mixing of exact exchange in PBE0.

J.P. Perdew, M. Ernzerhof, and K. Burke, J. Chem. Phys. 105, 9982 (1996).
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Orbital dependence

Much of deficiencies in common functionals are due to their explicit
local (or semi-local) density dependence.

There are many effects due to discrete orbitals that are missed.

Some of these effects are seriously weird, but are important to know
about.

Kieron (UC Irvine) Basics of DFT ELK 2011 48 / 61



The LDA (or GGA or hybrid) potentials decay too rapidly

Accurate densities from QMC calculations:
I C. J. Umrigar and X. Gonze, Phys. Rev. A 50, 3827 (1994).

So how come it produces a good density?
I Unambiguous exchange-correlation energy density K. Burke, F.G. Cruz, and K.C.

Lam, J. Chem. Phys. 109, 8161 (1998).
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With local approximations, each electrons repels itself

For any one-electron density n(r):

EX[n] = −U[n], EC[n] = 0 (N = 1)

Standard functionals all unable to cancel the self-Hartree energy.

Real trouble is unbalanced nature of effect.

Stretched H+
2 is an extreme case as local-type functionals have huge

error as R →∞.

Violated by most semilocal functionals (unless artificially built in).

Particularly problematic for localized and f electrons in solids.
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Perdew-Zunger Self-Interaction Correction, 1981

Perdew-Zunger found a way to correct for self-interaction:

ESIC
HXC[n] = EHXC[n]−

N∑
j=1

EHXC[|φj |2]

Exact for any one electron system, for both X and C
Improves LDA results, especially those with strong SI error.
Does not generally improve GGA or hybrid
Sadly, not invariant under unitary transformation of occupied orbitals,
so not a proper functional.
Very useful for localized electrons, where LDA fails badly, but must
choose which orbitals.
For bulk system, correction vanishes if KS orbitals are used, but
generally correct when orbitals are localized.
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Separated LiH with approximations and SIC

Figure: Total energy of separated LiH as a function of the number of electrons
transferred in various approximations.

What do the Kohn-Sham orbitals mean? How do atoms dissociate?, J.P. Perdew, in
Density Functional Methods in Physics, edited by R.M. Dreizler and J. da Providencia
(Plenum, NY, 1985), p. 265.
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Jacob’s ladder
to DFT heaven

(or hell?)

Increasingly sophisticated
and expensive density
functional
approximations.

EXC =

∫
d3r f (n,∇n, τ, . . .)

JCTC 2009 Vol. 5, Iss. 4.
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How to handle orbital-dependence in KS DFT

Use the Optimized Effective Potential (Method)

Way to handle orbital-dependent functionals in KS scheme, i.e., with
single multiplicative KS potential
Still density functionals, since orbitals uniquely determined by density
Several schemes to implement, all much more expensive than regular
KS-DFT
Improves many properties:

I No self-interaction error
I Potentials and orbital energies much better
I Approximates derivative discontinuity

But don’t have compatible correlation

I Stephan Kümmel and Leeor Kronik, Rev. Mod. Phys. 80, 3 (2008)
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What’s the difference between HF and EXX?

HF minimizes EX[{φj}] over all possible wavefunctions

EXX includes additional constraint of common potential (i.e., KS)

Yields almost identical total energies, with HF an eensty bit lower

Occupied orbital energies very similar, but big difference in
unoccupied orbitals

Reports of good gaps with hybrids use HF scheme mixed with KS
(generalized KS scheme), so not getting a ‘good’ KS gap.
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Van der Waals forces

Very important for soft Coulomb matter
Can show E → −C6/R6 for large R between two fragments
But GGA’s use n(r) and |∇n|, so E decays exponentially with R.
Many attempts to include in DFT

I Add empirical corections to DFT results, eg DFT-D
F Grimme,LW

I Langreth and Lundquist: RPA treatment leading to explicit non-local
functional.

F M. Dion et al, Phys. Rev. Lett. 92, 246401 (2004).
I Exchange hole used to get C6 .

F Axel D. Becke and Erin R. Johnson J. Chem. Phys. 127, 154108 (2007)

LL functional now widely coded and being applied to many systems.
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Excitations

Many ways to do excitations in DFT
I Ensemble DFT
I ∆ SCF
I min-max principle
I TDDFT linear response

Many other ways to do excitations
Quantum transport very difficulty for any method

Reviews
I TDDFT: K. Burke, J. Werschnik, and E. K. U. Gross, The Journal of

Chemical Physics, 123, 062206 (2005).
I Density functional calculations of nanoscale conductance M. Koentopp,

C. Chang, K. Burke, and R. Car, J. Phys.: Condens. Matter 20,
083203 (2008).
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Semiclassical origins of DFT

Large ongoing project in our group
Many implications for DFT
Basic idea:

I In a semiclassical limit, LDA is dominant term for all matter.
I Next corrections are usually quantum oscillations, not gradient

corrections of slowly varying densities, hence need for generalization.
I Expansion is asymptotic, so sometimes next correction worsens result.

Short-term results
I PBEsol: Solves problem of improving lattice constants over LDA, but

creates other issues.
I Orbital-free calculations for atoms.

Long-term goals
I Systematic non-empirical functional construction
I Unification of DFT with Green’s function and wavefunction methods
I Orbital-free calculations
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PBEsol

Exchange:
I Restore gradient expansion for exchange.
I In PBE, µ = 0.219, in PBEsol, µ = 10/81 = 0.1234.

Correlation
I For large neutral jellium clusters, EXC = eunif

XC (n)V + σXC(n)A + ... .
I β = 0.046 gives best energy (PBE had .0667).
I First proposed by Armiento and Mattsson (2005), whose functional

gives almost identical lattice parameters.
Performance:

I Consistency : σX(n) almost exact
I Improves lattice parameters of LDA by 2-3.
I Means poor atomic energies, so worsens thermochemistry.
I Improves transition between planar and globular Au− clusters.

F Johansson, Lechtken, Schooss, Kappes, and Filipp Furche, Phys. Rev. A 77,
053202 (2008)

I Take 5 minutes to implement by modifying PBE
I Perdew, Ruzsinszky, Csonka, Vydrov, Scuseria, Constantin, Zhou, and KB, Phys. Rev. Lett. 100, 136406 (2008)
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Lessons from second part

Standard functionals should give heirarchy of increasingly accurate
results

Non-empirical approach, championed by Perdew, and few-empirical,
by Becke, Parr, Yang, etc.

Hybrids can be partially rationalized.

Some things are just not included in common functionals, e.g.,
dispersion forces, neutral fragmentation, etc.

Excitations formally unavailable except via other theorems, such as
Runge-Gross for TDDFT.

Thanks to students and NSF.
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